Версия: 01.09.2023

ПРАВИЛА

КЛАССИФИКАЦИИ И ПОСТРОЙКИ ПЛАВУЧИХ БУРОВЫХ УСТАНОВОК

ЧАСТЬ II

НД № 2-020201-026

Санкт-Петербург 2023

ПРАВИЛА КЛАССИФИКАЦИИ И ПОСТРОЙКИ ПЛАВУЧИХ БУРОВЫХ УСТАНОВОК

Правила классификации и постройки плавучих буровых установок (Правила ПБУ) Российского морского регистра судоходства (РС, Регистр) утверждены в соответствии с действующим положением и вступают в силу 1 сентября 2023 года.

Настоящие Правила составлены на основе последней версии Правил классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ 2022 года издания с учетом изменений и дополнений, подготовленных непосредственно к моменту издания.

В Правилах учтены процедурные требования, унифицированные требования, унифицированные интерпретации и рекомендации Международной ассоциации классификационных обществ (МАКО) и соответствующие резолюции Международной морской организации (ИМО).

Правила устанавливают требования, являющиеся специфичными для ПБУ, учитывают рекомендации Кодекса постройки и оборудования плавучих буровых установок 2009 года (Кодекс ПБУ 2009 года) (резолюция ИМО А.1023(26) с поправками) и дополняют Правила классификации и постройки морских судов и Правила по оборудованию морских судов.

Правила состоят из следующих частей:

часть І «Классификация»;

часть II «Корпус»;

часть III «Устройства, оборудование и снабжение»;

часть IV «Остойчивость»;

часть V «Деление на отсеки»;

часть VI «Противопожарная защита»;

часть VII «Механические установки и механизмы»;

часть VIII «Системы и трубопроводы»;

часть IX «Котлы, теплообменные аппараты и сосуды под давлением»;

часть X «Электрическое оборудование»;

часть XI «Холодильные установки»;

часть XII «Материалы»;

часть XIII «Сварка»;

часть XIV «Автоматизация»;

часть XV «Оценка безопасности»;

часть XVI «Сигнальные средства»;

часть XVII «Спасательные средства»;

часть XVIII «Радиооборудование»;

часть XIX «Навигационное оборудование»;

часть XX «Оборудование по предотвращению загрязнения».

:

ПЕРЕЧЕНЬ ИЗМЕНЕНИЙ

(изменения сугубо редакционного характера в Перечень не включаются)

Для данной версии нет изменений для включения в Перечень.

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

- 1.1.1 Требования настоящей части Правил ПБУ распространяются на:
- .1 стальные самоходные и несамоходные ПБУ, типы которых определены в 1.2 части I «Классификация» Правил ПБУ;
- .2 ПБУ на натяжных связях (ПБУНС), типы которых определены в 1.2 части I «Классификация» Правил ПБУ. Предполагается, что корпус ПБУНС выполнен из стали, и для ледостойких ПБУНС может иметь сталебетонный ледовый пояс; натяжные связи изготовлены из стали, фундамент может быть из стали, бетона/железобетона или композитным:
- **.3** самоподъемные ПБУ (СПБУ), поднимаемые в рабочем состоянии над поверхностью моря на колоннах, опирающихся на грунт.
- **1.1.2** В настоящей части сформулированы положения, целью которых является обеспечение прочности элементов корпуса ПБУ. В случае, если при расчете прочности используются альтернативные подходы, они должны быть согласованы с Регистром. При этом должен быть обеспечен уровень безопасности конструкции, по крайней мере, не ниже чем предусмотрен Правилами ПБУ.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

- **1.2.1** Определения и пояснения, относящиеся к общей терминологии Правил ПБУ, приведены в Общих положениях о классификационной и иной деятельности, в Правилах классификации и постройки морских судов ¹ и в части I «Классификация» Правил ПБУ.
 - 1.2.2 В настоящей части приняты следующие определения.

Верхнее строение — верхняя часть ПБУ, предназначенная для размещения оборудования и обслуживающего персонала, не участвующая в обеспечении общей прочности корпуса.

Донный фундамент (якорь) — подводный элемент ПБУНС, закрепленный на морском дне.

Конструктивные элементы — участки листов обшивки, настилов, составной сварной и катаный набор, элементы обшивки и настилов вместе с набором и т.п.

Корпус ПБУ— все конструктивные элементы ПБУ, предназначенные для восприятия общих и местных, постоянных и переменных нагрузок. Если корпус ПБУ состоит из самостоятельных (но обязательно связанных между собой) элементов, таких как: колонны (опорные колонны, стабилизирующие колонны), подводный опорный блок, понтоны, раскосы, верхний корпус (верхняя несущая конструкция), то по отношению к ним применим термин корпусная конструкция.

Натяжная связь — система элементов, соединяющая корпус и подводный фундамент с целью заякоривания ПБУНС.

Райзер — система трубопроводов и оборудования для связи скважины с платформой и обеспечения подачи добываемого продукта на платформу.

¹ В дальнейшем — Правила РС/К.

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

- **1.3.1** На корпус (корпусные конструкции) ПБУ распространяются требования Общих положений о классификационной и иной деятельности и Правил РС/К.
- **1.3.2** Техническому наблюдению подлежат следующие конструкции корпуса ПБУ (в зависимости от типа технического сооружения) в процессе их изготовления:

наружная обшивка и набор — опорных и стабилизирующих колонн, понтонов, подводного опорного блока, раскосов, верхнего корпуса, верхней несущей конструкции и т.п.:

водонепроницаемые переборки и цистерны;

палубы и платформы;

вертолетные площадки;

надстройки и рубки;

порталы опорных колонн;

комингсы, тамбуры и другие ограждения отверстий в корпусе ПБУ;

фундаменты под главные и вспомогательные механизмы, а также фундаменты агрегатов, подлежащих техническому наблюдению; портал буровой вышки.

- **1.3.3** До начала изготовления конструкций, указанных в <u>1.3.2</u> настоящей части, должна быть представлена на рассмотрение Регистру техническая документация по корпусу в объеме, предусмотренном в 4.1.3 части І «Классификация» Правил ПБУ. Помимо указанного, должна быть представлена следующая техническая документация:
- .1 исходные данные исчерпывающие данные по внешним условиям (ветер, волнение, течение, лед, грунт, сейсмика, температура) для районов эксплуатации ПБУ, соответствующие требованиям 2.2 настоящей части.

Могут быть использованы данные, приведенные в <u>приложении 1</u> настоящей части, в справочных данных о режимах ветра и волнения, размещенных на официальном сайте PC, или другие сведения по внешним условиям, предварительно согласованные с Регистром;

- .2 характеристика режимов эксплуатации данные о режимах эксплуатации ПБУ в объеме, оговоренном в <u>2.3</u>. Могут быть рассмотрены дополнительные режимы, отвечающие специфике конкретной ПБУ;
- .3 расчеты прочности выполненные в объеме, необходимом и достаточном для подтверждения прочности корпуса по принятым критериям для режимов эксплуатации ПБУ, способных вызвать в конструкции опасное состояние. Методы расчета должны быть согласованы с Регистром;
 - .4 инструкция по эксплуатации ПБУ, содержащая:

краткое описание ПБУ;

перечень режимов эксплуатации;

допускаемые значения параметров, характеризующих безопасность ПБУ в данном режиме;

случаи загрузки ПБУ в каждом режиме;

руководство для экипажа по обслуживанию ПБУ в каждом режиме;

организационное обеспечение безопасной эксплуатации ПБУ;

чертежи с указанием категорий и прочности сталей, примененных в конструкциях ПБУ, перечень допустимых методов сварки и сварочных материалов. Если необходимо, дополнительные указания по материалам и сварке, включая возможные ограничения и условия при проведении ремонтных работ либо при переоборудовании.

1.4 КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ

- **1.4.1** Конструктивные элементы ПБУ следует классифицировать, в зависимости от уровня напряжений, влияния возможного их повреждения на прочность и надежность технического сооружения, как специальные, основные и второстепенные.
- **1.4.1.1** Специальные конструктивные элементы основные конструктивные элементы, через которые передается критическая нагрузка, имеющие концентраторы напряжений и т.п.
- **1.4.1.2** Основные конструктивные элементы элементы, обеспечивающие общую прочность конструкции и непроницаемость (если это требуется по условиям эксплуатации), а также те элементы, важность которых обусловлена обеспечением безопасности обслуживающего персонала.
- **1.4.1.3** Второстепенные конструктивные элементы элементы, повреждение которых не оказывает существенного влияния на безопасность технического сооружения.
 - 1.4.2 Конструктивные элементы полупогружных ПБУ (ППБУ).
 - **1.4.2.1** Специальные:

наружная обшивка в местах соединения стабилизирующих колонн с палубами и нижними корпусами;

палубный настил, усиленные рамные балки и переборки верхнего корпуса или платформы, которые образуют коробчатые или тавровые несущие конструкции на участках, подверженных значительным сосредоточенным нагрузкам;

основные узлы пересечения раскосов и распоров;

полупереборки, участки переборок, платформ и набор, воспринимающие значительные сосредоточенные нагрузки в местах пересечения несущих конструктивных элементов;

элементы конструкций, предусмотренные для передачи усилий в узлах пересечения или соединения основных несущих конструкций.

1.4.2.2 Основные:

наружная обшивка стабилизирующих колонн, верхних и нижних корпусов, раскосов и распоров;

палубный настил, переборки и усиленные рамные балки верхнего корпуса, которые образуют коробчатые или тавровые несущие конструкции, не подверженные значительным сосредоточенным нагрузкам.

1.4.2.3 Второстепенные:

внутренние конструкции, включая переборки и выгородки стабилизирующих колонн и нижних корпусов, набор колонн, раскосов и распоров;

палубы верхней платформы пли палубы верхнего корпуса, за исключением районов, в которых элементы являются основными или специальными;

стабилизирующие колонны большого диаметра с малым отношением длины к диаметру, за исключением узлов соединения колонны и пересечений.

1.4.3 Конструктивные элементы самоподъемных ПБУ (СПБУ).

1.4.3.1 Специальные:

вертикальные опорные колонны в районе соединения их с опорными башмаками; узлы пересечения элементов решетчатой опорной колонны с вварными элементами, включая стальные отливки.

1.4.3.2 Основные:

наружная обшивка цилиндрических опорных колонн;

обшивка всех элементов решетчатых опорных колонн;

переборки, палубы, обшивка борта, днища верхнего строения, которые образуют коробчатые или тавровые несущие конструкции;

конструкции порталов опорных колонн и опорных башмаков, воспринимающие нагрузку от опорных колонн.

1.4.3.3 Второстепенные:

внутренний набор, включая переборки и элементы рамного набора цилиндрических опорных колонн;

внутренние переборки и выгородки, а также элементы набора верхнего строения;

внутренние переборки башмаков опорных колонн, за исключением районов, в которых конструктивные элементы являются основными или специальными;

настил палубы, обшивка бортов и днища верхнего строения, за исключением районов, где конструктивные элементы являются основными и специальными.

1.4.4 Конструктивные элементы корпуса, донного фундамента и натяжных связей ПБУНС.

1.4.4.1 Специальные:

конструкции корпуса многоколонной ПБУНС как определено в <u>1.4.2.1</u> для ППБУ; конструкции корпуса башенноподобной ПБУНС, такие как:

конструктивные элементы ледового пояса в случае, если ПБУНС является нефтехранилищем;

конструктивные элементы в районах соединения корпусных конструкций, участвующих в обеспечении общей прочности, а также в местах с резким изменением поперечного сечения;

участки конструкций, подверженные значительным сосредоточенным нагрузкам;

элементы корпуса ПБУНС и донного фундамента, взаимодействующие с натяжными связями;

участки взаимодействия натяжных связей с корпусом и донным фундаментом и высоконапряженные элементы устройств, поддерживающих натяжения в натяжных связях;

локальные районы натяжных связей, в которых могут иметь место высокие напряжения (муфты, сварные поперечные соединения и т.п.);

части донного фундамента, воспринимающие значительные нагрузки.

1.4.4.2 Основные:

конструкции корпуса многоколонной ПБУНС как определено в 1.4.2.2 для ППБУ;

натяжные связи и их элементы, за исключением районов, где элементы являются специальными;

конструктивные элементы донного фундамента, за исключением районов, где элементы являются специальными.

1.4.4.3 Второстепенные:

конструкции корпуса многоколонной и башенноподобной ПБУНС как определено в <u>1.4.2.3</u>.

Никакие конструктивные элементы натяжных связей и якорей, а также районов соединения корпуса с натяжными связями не могут быть классифицированы как второстепенные конструктивные элементы.

1.4.5 Окончательная классификация конструктивных элементов ПБУ осуществляется проектантом и подлежит согласованию с Регистром.

1.5 МАТЕРИАЛЫ

1.5.1 Стальные конструкции.

1.5.1.1 Для изготовления конструкций ПБУ должна применяться допущенная Регистром сталь, удовлетворяющая требованиям части XIII «Материалы» Правил РС/К.

1.5.1.2 Категория стали для конкретного конструктивного элемента ПБУ назначается по <u>табл. 1.5.1.2</u> в зависимости от расчетной температуры материала конструкции и ответственности данного элемента согласно требованиям <u>1.4</u>.

Таблица 1.5.1.2

I/ a a		Расчетная температура материала конструкции, °C						
конструктивные элементы	Категория стали для ПБУ	0	-10	-20	-30	-40	-50	-60
3,10,M0111BI					ента конс	трукции,	мм, не бо	лее
	А	30	20	10	_	_	_	_
	В	40	30	20	10	_	_	_
	D	50	50	45	35	25	15	_
	Е	50	50	50	50	45	35	25
	F	50	50	50	50	50	50	45
ø	A32, A36, A40	40	30	20	10		_	
HHb.	D32, D36, D40	50	50	45	35	25	15	
епен	E32, F36, E40	50	50	50	50	45	35	25
)OCT	F32, F36, F40	50	50	50	50	50	50	45
Второстепенные	AH420, AH460, AH500	40	25	10	_	_	_	_
	DH420, DH460, DH500	50	45	35	25	15	_	_
	EH420, EH460, EH500	50	50	50	45	35	25	15
	FH420, FH460, FH500	50	50	50	50	50	45	35
	А	20	10	_	_	_	_	_
	В	25	20	10			_	
	D	45	40	30	20	10	_	
	E	50	50	50	40	30	20	_
	F	50	50	50	50	40	30	25
-PIE	A32, A36, A40	25	20	10			_	
Основные	D32, D36, D40	45	40	30	20	10	_	_
Ö	E32, F36, E40	50	50	50	40	30	20	15
	F32, F36, F40	50	50	50	50	50	40	30
	AH420, AH460, AH500	20	_	_	_	_	_	_
	DH420, DH460, DH500	45	35	25	15	_	_	_

		Por	NIOTUOG T	OMEODOTY	no Moton	MODO KOU	OTD\///!!!4!4	°C
	Категория стали	0 0	четная т					
элементы	для ПБУ		<u>−10</u> щина сте	<u>–20</u>	-30 ента конс	<u>–40</u>	<u>–50</u> мм. не бо	<u>–60</u>
	EH420, EH460, EH500	50	50	45	35	25	15	—
	FH420, FH460, FH500	50	50	50	50	45	35	25
	А	15					_	
	В	15	_	_	_	_	_	_
	D	30	20	10	_	_	_	_
	Е	50	45	35	25	15	_	_
	F	50	50	50	45	35	25	15
	A32, A36, A40	15	_	_	_	_	_	_
1ble	D32, D36, D40	30	20	10	_	_	_	_
Специальные	E32, F36, E40	50	45	35	25	15	_	_
βиће	F32, F36, F40	50	50	50	50	40	30	20
Ü	AH420, AH460, AH500	_	_	_	_	_	_	_
	DH420, DH460, DH500	25	15	_	_	_	_	_
	EH420, EH460, EH500	50	40	30	20	10	_	_
	FH420, FH460, FH500	50	50	50	40	30	20	10

Примечания: 1. Для промежуточных значений температур допускается линейная интерполяция.

1.5.1.3 Расчетная температура материала конструкций определяется экспериментально или расчетом, исходя из принятой минимальной среднесуточной температуры T_a (см. 1.2.3 части II «Корпус» Правил РС/К). Расчетная температура окружающего воздуха — см. <u>2.2.8</u> настоящей части. При отсутствии указанных обоснований расчетная температура материала наружных надводных конструктивных элементов принимается равной температуре окружающего воздуха.

Может быть допущено повышение расчетной температуры, если Регистру будут представлены убедительные доказательства (полученные расчетным или экспериментальным путем) того, что в реальных условиях эксплуатации температура конкретных элементов конструкции ПБУ не достигает указанной в спецификации минимальной температуры окружающего воздуха.

^{2.} Допускается использование других марок сталей, если их свойства признаются достаточными для обеспечения заданного уровня безопасности.

^{3.} Выбор категории стали верхних строений не регламентируется.

- **1.5.1.4** Специальные и основные конструктивные элементы, подвергающиеся значительным нагрузкам в направлении толщины проката, должны изготавливаться из зет-стали в соответствии с требованиями 3.14 части XIII «Материалы» Правил РС/К.
- **1.5.1.5** Расчетный предел текучести материала R_d в зависимости от нормативного предела текучести R_{eH} следует определять по табл. 1.5.1.5.

Таблица 1.5.1.5

Категория стали для			Расчетный предел текучести R_d , МПа, при				
ПБУ	текучести, <i>R_{eH}</i> , МПа		толщине, мм				
		<30	30 — 50	50 — 70			
A, B, D, E, F	235	235	215	200			
A32, D32, E32, F32	315	315	295	280			
A36, D36, E36, F36	355	355	335	320			
A40, D40, E40, F40	390	390	370	355			
AH420, DH420, EH420,	420	420	390	365			
FH420							
AH460, DH460, EH460,	460	460	430	390			
FH460							
AH500, DH500, EH500,	500	500	480	440			
FH500							

1.5.1.6 Стали обычной, повышенной и высокой прочности толщиной более 75 мм, а также стали с $R_{eH} > 500$, МПа, могут быть допущены Регистром к применению, если они удовлетворяют требованиям части XIII «Материалы» Правил РС/К. Расчетный предел текучести для этих сталей подлежит согласованию с Регистром.

1.5.2 Железобетонные конструкции.

Требования к материалам железобетонных конструкций содержатся в 3.2 части II «Корпус» Правил классификации и постройки морских стационарных платформ¹.

-

¹ В дальнейшем — Правила МСП.

1.6 ИЗНОС КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ

- **1.6.1** Размеры конструктивных элементов ПБУ следует назначать с учетом надбавки на коррозионный износ, а обшивки ледового пояса ледостойкой установки с учетом запасов на истирание поверхности льдом.
- **1.6.2** К толщине конструктивных элементов, обоснованной расчетами прочности, требуется надбавка на износ Δs , мм, определяемая по формуле

$$\Delta s = kuT^*, \tag{1.6.2}$$

где u – расчетная скорость износа, мм/год;

 T^* — T/2 — для конструктивных элементов ПБУ, ремонтопригодных в процессе эксплуатации;

т – расчетный срок эксплуатации ПБУ, лет;

k — коэффициент, учитывающий положительное влияние защитных мероприятий по уменьшению износа ($k \le 1$).

1.6.3 Расчетная скорость износа u принимается по данным об износе выбранных сталей в условиях, соответствующих условиям эксплуатации ПБУ без учета положительного влияния защитных мероприятий по уменьшению износа. За неимением таких данных расчетная скорость износа может быть назначена с учетом соответствующих требований Правил РС/К. При этом следует обращать внимание на соответствие условий работы конструктивных элементов ПБУ и элементов, для которых приводятся данные в Правилах РС/К.

При назначении расчетных скоростей коррозии для конструктивных элементов ППБУ допускается руководствоваться рекомендациями табл. 1.6.3.

Таблица 1.6.3 Рекомендуемые расчетные скорости коррозии конструктивных элементов ППБУ

Nº	Наименование конструктивного элемента	Расчетная скорость
п/п		коррозии, мм/год
1	Раскосы	, , , , , , , , , , , , , , , , , , ,
1.1	Горизонтальные поперечные:	
	в районе соединения с колоннами и другими раскосами	0,18
	вне района соединения	0,16
1.2	Горизонтальные диагональные:	
	в районе соединения с колоннами и другими раскосами	0,18
	вне района соединения	0,14
1.3	Наклонные поперечные:	
	в районе соединения с колоннами, понтонами, верхним	0,18
	корпусом	
	вне района соединения	0,16
1.4	Наклонные продольные:	
	в районе соединения с колоннами, верхним корпусом	0,15
	вне района соединения	0,14
2	Колонны:	
	в районе соединения с понтонами	0,14
	по уровню переменной ватерлинии	0,16
	надводная часть	0,10
	подводная часть	0,12
3	Понтоны:	
	днище, палуба, борта балластных и топливных отсеков	0,16
	переборки	0,14
	днище, палуба, борта сухих отсеков	0,13

Nº п/п	Наименование конструктивного элемента	Расчетная скорость коррозии, мм/год
4	Верхний корпус:	
	борта, транцы	0,11
	переборки	0,10
	опорные балки	0,13
	главная палуба	0,10
	открытые участки верхней палубы, подверженные	0,13
	воздействию атмосферных осадков	

- **1.6.4** Коэффициент k, учитывающий положительное влияние защитных мероприятий по уменьшению износа, может приниматься меньше единицы в том случае, если используется эффективная защита конструктивных элементов от коррозии или применяются специализированные покрытия и материалы против истирания поверхности льдом. Коэффициент вводится только для тех элементов, на которые распространяются защитные мероприятия.
- **1.6.4.1** Для конструкций ППБУ, оборудованных эффективной системой коррозионной защиты, величина коэффициента k=0.5, если защищены обе поверхности конструктивного элемента и k=0.75, если защищена одна поверхность конструктивного элемента.
 - **1.6.5** Минимальная надбавка на коррозию $\Delta s = 1,0$ мм.

1.7 СВАРНЫЕ КОНСТРУКЦИИ И СОЕДИНЕНИЯ

- 1.7.1 Сварные соединения конструкций ПБУ должны удовлетворять требованиям частей II «Корпус» и XIV «Сварка» Правил РС/К и части XIII «Сварка» Правил ПБУ в отношении сварных соединений и конструкций, сварочных материалов, методов сварки и контроля качества сварных соединений.
- **1.7.2** Сварные соединения специальных конструкций, в которых могут возникнуть чрезмерные напряжения в направлении толщины проката, должны выполняться таким образом, чтобы исключить или уменьшить возможность слоистого разрыва.
- **1.7.3** Размеры швов устанавливаются по одобренным национальным стандартам или технической документации.

2 ОБЩИЕ ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ КОНСТРУКЦИЙ

2.1 ОБЩИЕ ПОЛОЖЕНИЯ

2.1.1 Конструкция ПБУ должна быть такой, чтобы ее прочность (применительно к внешним условиям районов эксплуатации) в течение всего срока службы удовлетворяла принятым критериям в следующих расчетных режимах:

транспортировки;

установки на точку;

рабочем;

выживания или экстремального нагружения;

снятия с точки.

Кроме того, если это необходимо по условиям строительства конструкции, должна быть проверена прочность конструкции или отдельных ее элементов в процессе изготовления.

Конкретизация расчетных режимов применительно к типу ПБУ производится в разд. 3.

- **2.1.2** Проектирование ПБУ должно осуществляться с учетом требований безопасной эксплуатации, включая требования к экологической безопасности, в течение всего срока службы сооружения, а также обеспечения удобства ведения работ по освидетельствованию/осмотру и текущему ремонту конструкций.
- **2.1.3** ПБУ рекомендуется оборудовать контрольно-измерительной аппаратурой для наблюдения за состоянием корпусных конструкций сооружения с целью оценки их надежности, своевременного выявления дефектов и повышения уровня безопасности.
- **2.1.4** Расчеты прочности должны выполняться применительно ко всем конструктивным элементам ПБУ: специальным, основным и второстепенным.

Размеры конструктивных элементов, подвергающихся воздействию только местных нагрузок и не участвующих в обеспечении общей прочности установки (платформы), могут определяться в соответствии с применимыми требованиями части II «Корпус» Правил РС/К.

- **2.1.5** Конструктивная схема и общее расположение верхнего строения должны учитывать требования безопасности, снижающие риск от возможных внешних воздействий. В частности, жилой блок следует располагать со стороны господствующих ветров, а вышку и факел с противоположной стороны и т.п.
- **2.1.6** Конструкции корпуса ПБУ в местах установки механизмов системы позиционирования должны обеспечивать восприятие усилий, равных разрывной нагрузке тросов или цепей. При этом допускаемые напряжения должны быть не более $0.95R_{eH}$.

2.2 ВНЕШНИЕ УСЛОВИЯ

2.2.1 Общие требования.

- **2.2.1.1** В характеристику внешних условий района эксплуатации (моря или морей, района или части района моря) включаются сведения об окружающей среде, оказывающей влияние на надежность морского сооружения (ветер, волнение, течение, лед, грунт, сейсмическое воздействие, температура воздуха и др.).
- **2.2.1.2** Описание внешних условий должно отвечать реальной природе ветро- и волнообразования, течений и ледовых образований и базироваться на сведениях вероятностно-статистического характера.
- **2.2.1.3** Основные параметры внешних условий, назначаемые в зависимости от заданного района эксплуатации, подлежат согласованию с Регистром.

Сведения о характеристиках ветроволновых условий отдельных морей приведены в <u>приложении 1</u> настоящей части, в справочных данных о режимах ветра и волнения, размещенных на официальном сайте PC..

2.2.1.4 Если условия эксплуатации морского сооружения ограничены перечнем морей, районов или частей районов морей, сезонами или допускаемыми величинами характеристик внешних условий, то перечень морей, границ районов или частей районов, сезоны и допускаемые величины характеристик внешних условий для соответствующих режимов эксплуатации указываются в Инструкции по эксплуатации морского сооружения.

2.2.2 Ветер.

2.2.2.1 В качестве характеристик ветра рассматриваются: средняя скорость ветра на высоте анемометра (z=10~м), закон изменения средней скорости ветра по высоте, параметры порывистости ветра, спектральные свойства пульсаций ветра.

Основной информацией являются скорости ветра \overline{w}_{10} с десятиминутным осреднением на высоте анемометра ($z=10\,$ м), именуемые эталонными, и их повторяемости в рассматриваемом районе за длительный период времени, не менее $20\,$ лет.

- **2.2.2.2** Экстремальные значения средних скоростей ветра определяются по данным многолетних наблюдений как наиболее вероятные величины за 100 лет, однако они не должны приниматься менее 25,8 м/с.
- **2.2.2.3** Связь между максимальной W_{max} и средней \overline{w} скоростями задается с помощью коэффициента порывистости G:

$$W_{max} = G\overline{w}; \ G = 1 + \gamma \vartheta_w,$$
 (2.2.2.3) где γ — численный коэффициент (см. табл. 2.2.2.3); σ_w — стандартное отклонение скоростей ветра; ϑ_w — коэффициент изменчивости скорости ветра (см. 2.2.2.4) $\vartheta_w = \sigma_w/\overline{w}.$

Таблица 2.2.2.3

Интервал осреднения		Продолжительность максимального порыва \emph{n}_{i} с					
скорости 10 мин	1	3	6	12	18	36	90
γ	2,94	2,58	2,52	2,10	1,90	1,55	1,00

Максимальная скорость определяется при осреднении за n секунд. Рекомендуется n=3 с.

2.2.2.4 При описании порывистости ветра рекомендуется использовать спектр продольных пульсаций Давенпорта:

$$S(f) = \frac{4K_{hr}\bar{w}_{10}^2n^2}{f(1+n^2)^{4/3}},\tag{2.2.2.4-1}$$

где $n = 1200 f/\overline{w}_{10}$

f — частота, Гц;

 \overline{w}_{10} – средняя скорость ветра при часовом осреднении, м/с; переходные коэффициенты между различными интервалами осреднения следует определять по графику на рис. 2.2.2.4;

 K_{hr} – коэффициент лобового сопротивления подстилающей поверхности, см. табл. 2.2.2.4-1.

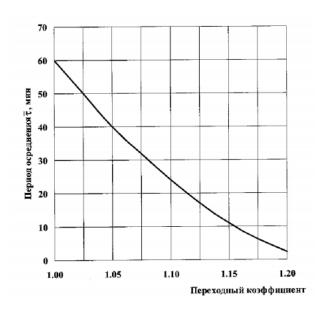


Рис. 2.2.2.4 График переходных коэффициентов $v_{\scriptscriptstyle 7}/v_{60}$

Таблица 2.2.2.4-1

\overline{w}_{10} , m/c	15	20	25	30
K_{hr} 10 ³	2,0	2,5	3,0	3,5

Профиль скоростей ветра по высоте с учетом времени осреднения определяется по формуле

$$\overline{w} = \overline{w}_{10} [1 + \ln(z/10)^{1/7} (10/t)^{1/20}],$$
 (2.2.2.4-2)

где t – время осреднения, мин,

и по табл. 2.2.2.4-2.

Таблица 2.2.2.4-2

					1 4 0 31 7	144 <i></i>
Время	3 c	5 c	15 c	1 мин	10 мин	60 мин
Z, M						
1,0	0,936	0,910	0,856	0,786	0,671	0,581
5,0	1,166	1,140	1,085	1,016	0,901	0,811

Время	3 c	5 c	15 c	1 мин	10 мин	60 мин
Z, M						
10,0	1,265	1,239	1,184	1,115	1,000	0,910
20,0	1,364	1,338	1,283	1,214	1,099	1,009
30,0	1,422	1,396	1,341	1,272	1,157	1,067
40,0	1,463	1,437	1,382	1,313	1,198	1,108
50,0	1,495	1,469	1,414	1,345	1,230	1,140
100,0	1,594	1,568	1,513	1,444	1,329	1,239

2.2.2.5 Закон изменения эталонных скоростей ветра по высоте: для открытых участков моря —

$$\overline{w}_z = \overline{w}_{10}[1 + \ln(z/10)^{1/7}];$$
 (2.2.2.5-1)

для прибрежных зон —

$$\overline{w}_z = \overline{w}_{10}[1 + \ln(z/10)^{1/5}],$$
 (2.2.2.5-2)

где z – высота над уровнем моря, м, $10 \le z \le 100$ м.

2.2.3 Волнение.

- **2.2.3.1** В качестве параметров, характеризующих свойства волнения, принимаются: высота волны 3-процентной обеспеченности, индивидуальная высота волны повторяемости раз в 100 лет, средний период волнения, средняя частота волны, спектральная плотность волнения, средняя длина волны, совместная повторяемость высот и периодов волн.
- **2.2.3.2** Совместная повторяемость высот и периодов волн определяется по данным специализированных организаций для данного района эксплуатации.
- **2.2.3.3** В условиях мелководья следует использовать соотношения между средним периодом, средней длиной волны и средней частотой:

$$\overline{\omega}^2 = \overline{K}gth\overline{K}H; \tag{2.2.3.3-1}$$

$$\tau = 2\pi/\overline{\omega},\tag{2.2.3.3-2}$$

где \overline{K} — волновое число, $\overline{K}=2\pi/\bar{\lambda};$ $\bar{\lambda}$ — средняя длина волны, м; H — глубина акватории, м.

2.2.3.4 Экстремальные значения высот волн определяются как наиболее вероятные величины за 100 лет (\tilde{h}_{100}) . При отсутствии информации об их величинах \tilde{h}_{100} могут быть определены по формуле

$$\tilde{h}_{100} = 0.38\sigma_{h_3} \ln n, \tag{2.2.3.4}$$

где $\sigma_{h_3} = \sqrt{\sum_i p_i h_{3i}^2};$

 p_i — повторяемость волнового режима, характеризуемого h_{3i} , (значение столбца \sum_n таблицы совместной повторяемости высот и периодов волн);

 $n = T/\bar{\tau}$;

T — принятый во внимание период времени (T = 100 лет);

 $\bar{\tau}$ — средний период волнения за этот период,

$$\bar{\tau} = \sum_j p_j \tau_j \; ,$$

 p_j – значение столбца $\sum_{ au}$ таблицы совместной повторяемости высот и периодов волн.

2.2.3.5 При оценках экстремальных величин могут использоваться две концепции: основанная на долговременных распределениях;

«наиболее тяжелого режима».

Замкнутая система оценок предполагает следующую взаимосвязь волновых характеристик для этих концепций:

$$h_{100} = 1,94(h_3)_{max};$$
 (2.2.3.5-1)

$$(h_3)_{100} = 2,94(h_3)_{max} - 18,8, (2.2.3.5-2)$$

где $(h_3)_{max}$ — высота волны, м, 3-процентной обеспеченности стационарного режима, на котором наиболее вероятно реализуется экстремальная величина заданной обеспеченности;

 $(h_3)_{100}$ — высота волны, м, 3-процентной обеспеченности с повторяемостью один раз в 100 пет.

2.2.3.6 В качестве расчетного спектра волнения рекомендуется принимать спектр JONSWAP

$$S_{I}(\omega) = S_{PM} \gamma^{exp[-(\omega - \omega_{m})^{2}/2\sigma^{2}\omega_{m}^{2}]},$$
 (2.2.3.6-1)

где S_{PM} – спектр Пирсона-Московица, определяемый по формуле

$$S_{PM} = 10^{-2} h_3^2 \bar{\tau}(\omega/\bar{\omega})^{-5} \exp[-0.44(\omega/\bar{\omega})^{-4}]; \tag{2.2.3.6-2}$$

 $\overline{\omega} = 2\pi/\overline{\tau}$ – средняя частота волны;

 ω_m – частота максимума спектра;

 γ – отношение максимумов S_I и S_{PM} ; среднее значение γ =3,3;

 $\sigma = \sigma_a = 0.07 = \sigma_{m} = 0.07$ для $\omega < \omega_m$;

 $\sigma = \sigma_b = 0.07 = \sigma$,=0.07 для $\omega > \omega_m$.

2.2.4 Течение.

2.2.4.1 При рассмотрении параметров течения в заданном районе следует учитывать такие факторы как его природа (приливное и ветровое), распределение на глубине, постоянство во времени.

При отсутствии сведений о профиле течения в рассматриваемом районе эксплуатации рекомендуется использовать среднестатистические данные, характеризуемые выражением

$$v_c = v_{c1}[(H_0 - z)/H_0]^{1/7} + v_{c2}[(H_0 - z)/H_0],$$
(2.2.4.1)

где v_c – общая скорость течения на расстоянии z от поверхности;

 v_{c1} — скорость приливного течения на уровне спокойной воды H_0 ;

 v_{c2} — скорость ветрового течения на уровне H_0 .

2.2.4.2 При рассмотрении влияния течения на параметры внешних нагрузок на ПБУ следует учитывать явление взаимодействия течений с волнами. В поле нерегулярных волн это приводит к модификации волнового спектра

$$S_{v_c}(\omega) = \frac{4S_0(\omega)}{\left[1 + (1 + 4v_c\omega/g)^{1/2}\right]\left[(1 + 4v_c\omega/g)^{1/2} + (1 + 4v_c\omega/g)\right]},$$
(2.2.4.2)

где $S_0(\omega)$ – спектр поверхностного волнения;

 $v_c > 0$ — совпадение направлений волн и течения;

 $v_c < 0$ — противоположные направления волн и течения.

2.2.5 Лед.

- **2.2.5.1** В качестве параметров, характеризующих физико-механические свойства ровного льда, наслоенного льда и консолидированной части тороса, рассматриваются: плотность, соленость, пределы прочности льда на сжатие, изгиб, растяжение, модуль упругости, вязкость разрушения, фрикционные свойства льда и сооружения.
- **2.2.5.2** В качестве параметров, характеризующих физико-механические свойства киля тороса, рассматриваются: сцепление киля тороса, угол внутреннего трения, коэффициент пустотелости киля.
- **2.2.5.3** В качестве параметров, характеризующих физико-механические свойства айсбергов, рассматриваются: плотность айсберга и предел прочности льда на сжатие.
- **2.2.5.4** В качестве параметров, характеризующих геометрические свойства льдов, рассматриваются: толщина ровного льда, толщина наслоенного льда, толщина консолидированной части тороса, высота паруса тороса, осадка киля тороса, ширина киля тороса (перпендикулярно его фронту), площадь ледяного поля, сплоченность льдов.
- **2.2.5.5** В качестве параметров, характеризующих геометрические свойства айсбергов, рассматриваются: форма и линейные размеры айсберга с учетом их изменения в зависимости от вертикальной отметки.
- **2.2.5.6** Для айсбергов, вмерзших в окружающий лед, указываются толщина и размеры ледяного поля.
- **2.2.5.7** Скорости дрейфа льдов также являются исходной информацией для оценок ледовых сил при взаимодействии ледовых образований с платформой.
- 2.2.5.8 Физико-механические и геометрические параметры льдов, а также скорость дрейфа являются случайными величинами. Для использования случайных величин в последующих процедурах расчета целесообразно применять вероятностный подход (например, метод Монте-Карло), который учитывает законы распределения всех случайных параметров применительно к конкретному району моря. Допустимо также использование в последующих расчетах статистически обоснованных комбинаций, определяющих наиболее опасные сочетания ледовых параметров. Сочетание значений случайных параметров должно иметь повторяемость 1 раз в 100 лет, а методика его формирования должна быть согласована с Регистром.

2.2.6 Грунт.

- **2.2.6.1** Для района установки СПБУ необходимо располагать инженерногеологическим разрезом основания с указанием мощности пластов по глубине и информацией по нормативным и расчетным значениям физико-механических свойств основания.
- **2.2.6.2** В перечень характеристик грунта включаются: вид грунта (песок, глина, ил и др.), вес грунта в воде, модуль деформации (статической и динамической), коэффициент Пуассона, величина сцепления, угол внутреннего трения грунта, C_I недренированное сопротивление сдвигу, коэффициент консолидации, коэффициент пористости, степень влажности, проницаемость грунта, показатель текучести.

2.2.7 Сейсмическая обстановка.

2.2.7.1 Основной информацией по землетрясениям в сейсмически активном районе является интенсивность сейсмического воздействия, имеющая период повторяемости в рассматриваемом районе за длительный промежуток времени—не менее 100 лет (проектное землетрясение).

Экстремальные значения интенсивности сейсмического воздействия определяются по данным многолетних наблюдений и экстраполируются как наиболее вероятные за 500 лет (максимальное расчетное землетрясение).

2.2.7.2 Для оценки балльности землетрясения рекомендуется использовать российскую шкалу, основанную на максимальных ускорениях (см. табл. 2.2.7.2).

Сейсмические воздействия должны учитываться, если расчетная сейсмическая интенсивность в районе эксплуатации СПБУ равна 6,5 и более баллов.

Таблица 2.2.7.2

Интенсивность, баллы, $J^{initial}$	грунта, см/с², при	скоростей колебаний	•
	периоде 0,1 с и более	грунта, см/с	сейсмометра, мм
6	30 — 60	3,0 — 6,0	1,5 — 3,0
7	61 — 120	6,1 — 12,0	3,1 — 6,0
8	121 — 240	12,1 — 24,0	6,1 — 12,0
9	241 — 480	24,1 — 48,0	12,1 — 24,0

2.2.7.3 Связь расчетной сейсмичности $J_{100}^{designed}$ ($J_{500}^{designed}$) со свойствами местных грунтов определяется по табл. 2.2.7.3.

Таблица 2.2.7.3

Категория	Грунты	Расче	тная с	ейсмич	ность
грунта по	.,	I ^{desig}	J_{50}^{d}	esigned	иап
сейсмическим			дной се		
свойствам			она экс		
		design	ed (1 ^{des}		баллы
		f_{100}	V ₅₀₀	8 8	9
1	CYCLE III IO EDWITT I DOOY DIAGOD HODI IDOTTOGI IO IA	0	6	7	8
1	Скальные грунты всех видов невыветрелые и	_	O	,	0
	слабовыветрелые (в том числе многолетнемерзлые в мерзлом				
	и талом состоянии); крупнообломочные грунты плотные из				
	магматических пород, содержащие до 20 % песчано-				
	глинистого заполнителя; скорость распространения				
	поперечных волн $V_s \ge 700$ м/с; соотношение скоростей				
	продольных и поперечных волн $V_p/V_s = 1,7-2,2$				
II	Скальные грунты, кроме отнесенных к І категории;	6	7	8	9
	крупнообломочные грунты, за исключением отнесенных к I				
	категории; пылевато-глинистые грунты с показателем				
	текучести $J_L \le 0.5$ при коэффициенте пористости е < 0.9 —				
	для глин и суглинков и e < 0,7 — для супесей;				
	многолетнемерзлые нескальные грунты пластичномерзлые				
	или сыпучемерзлые; $V_s = 250 \div 700$ м/с, $V_p/V_s = 2.2 - 3.5$				
III	Пески рыхлые независимо от крупности; пески гравелистые,	7	8	9	>9
	крупные и средней крупности плотные или средней плотности;				
	пески мелкие и пылеватые плотные и средней плотности;				
	пылевато-глинистые грунты с показателем текучести $I_L > 0.5$				
	при коэффициенте пористости $e > 0.9$ — для глин и суглинков				
	и $e>0.7$ — для супесей; многолетнемерзлые и скальные				
	грунты при возможности их оттаивания; илистые грунты;				
	$V_{\rm S} \leq 250$ м/с, $V_{\rm p}/V_{\rm S} \geq 3.5$ — для водонасыщенных грунтов				
	1.2 — · · · · · · · · · · · · · · · · ·				

- **2.2.7.4** Оценки сейсмической активности следует согласовывать с существующими российскими картами сейсмического районирования.
 - 2.2.8 Температура окружающей среды.
- **2.2.8.1** Основной информацией о температуре окружающего воздуха являются сведения о самой низкой среднесуточной температуре для района предполагаемой эксплуатации платформы, полученной на основании метеорологических данных по крайней мере за 10 лет, если в настоящей части не оговорено иного.
- **2.2.8.2** Минимальная расчетная температура для элементов платформ, находящихся во всех режимах эксплуатации под водой, принимается равной температуре воды -2 °C.

2.3 РАСЧЕТНЫЕ РЕЖИМЫ И НАГРУЗКИ

2.3.1 Классификация нагрузок.

2.3.1.1 По своей природе все нагрузки, действующие на конструкцию морского сооружения, подразделяются на две категории:

вызываемые воздействием окружающей среды (волнения, ветра, течения, льда, сейсмоактивности, грунта, температуры и т.п.);

создаваемые весом морского сооружения, а также работой механизмов, устройств, систем и другие, связанные с функционированием сооружения.

Каждая из этих категорий может включать постоянные и переменные во времени нагрузки; последние по характеру реакции конструкции на внешние воздействия делятся на статические и динамические. По относительным размерам зоны своего влияния каждая из указанных категорий нагрузки подразделяется на глобальные (общие) и локальные (местные).

2.3.1.2 Постоянными статическими являются нагрузки, не изменяющиеся по величине, положению или направлению при изменении внешних условий. Для конструкций, находящихся в состоянии покоя, вес собственно конструкции и всего постоянно закрепленного оборудования, а также силы поддержания, противодавления на подошву платформы (взвешивание), грунтовые нагрузки и вес грунта в объеме, зависящем от схемы взаимодействия платформы и основания, являются постоянными статическими нагрузками.

Переменными статическими являются нагрузки, изменяющиеся во времени, по величине и направлению. Однако скорость изменения этих нагрузок настолько мала, что она не оказывает динамического эффекта на конструкцию.

- **2.3.1.3** Динамическими являются нагрузки, изменяющиеся по величине, положению и направлению достаточно быстро, чтобы вызвать динамический эффект в поведении конструкции. Динамические эффекты в конструкциях способны создавать порывы ветра, волнение, лед, сейсмика.
 - 2.3.2 Режим выживания или экстремального нагружения.
- **2.3.2.1** Нагрузки, которые должны рассматриваться в расчетах прочности конструкций ПБУ при экстремальном нагружении, включают:

глобальные и локальные постоянные и переменные экстремальные нагрузки от воздействия окружающей среды;

глобальные и локальные функциональные нагрузки, соответствующие экстремальному состоянию ПБУ по условиям безопасности.

2.3.2.2 Для ПБУ экстремальными переменными нагрузками считаются вероятные из возможных максимальных внешних нагрузок, воздействующих на ПБУ за весь период эксплуатации. За расчетные принимаются такие значения переменных нагрузок, вероятность превышения которых в долговременном распределении принимается равной 10^{-8} .

Экстремальными ударными нагрузками на поперечный горизонтальный раскос ППБУ считаются нагрузки от его ударного взаимодействия с водой при плавании на встречном курсе относительно основной системы волн стационарного режима волнения с наибольшими $h_{3\%}$ и T_{av} долговременном совместном распределении высот $h_{3\%}$ и периодов T_{av} волн в районе эксплуатации, величина которых имеет обеспеченность 10^{-4} на этом режиме волн.

2.3.2.3 Должны быть рассмотрены возможные на практике наихудшие сочетания внешних нагрузок, при которых возможно возникновение наибольших напряжений в конструкциях.

2.3.3 Рабочий режим.

2.3.3.1 Нагрузки, которые должны рассматриваться в расчетах прочности конструкций ПБУ в рабочем режиме, включают:

глобальные и локальные постоянные и переменные нагрузки, вызываемые воздействием окружающей среды, соответствующие такой интенсивности, при которой возможно выполнение ПБУ основных функций;

глобальные и локальные функциональные нагрузки, соответствующие рабочему режиму.

2.3.3.2 Должны быть рассмотрены возможные на практике наихудшие сочетания функциональных нагрузок, при которых возможны наибольшие напряжения в конструкции.

В качестве расчетных значений переменных нагрузок от воздействия окружающей среды принимаются нагрузки повторяемостью один раз в год. Для ПБУ допускается принимать такие нагрузки, обеспеченность которых в долговременном распределении равна 10^{-6} .

2.3.4 Режим транспортировки.

- 2.3.4.1 Для режима транспортировки определяются допускаемые условия перехода и отмечаются в Классификационном свидетельстве и Инструкции по эксплуатации; для каждого перегона разрабатывается проект перегона, предлагающий мероприятия по обеспечению выполнимости ограничений по внешним условиям и безопасности ПБУ в транспортном состоянии. Проект перегона подлежит согласованию с Регистром.
- **2.3.4.2** Нагрузки, которые должны рассматриваться в расчетах прочности ПБУ в режиме транспортировки, включают общие и местные постоянные и переменные нагрузки от воздействия окружающей среды и такие функциональные нагрузки, при которых возникают наибольшие напряжения в конструкции в рассматриваемом режиме.
- **2.3.4.3** В качестве расчетных значений переменных нагрузок принимаются нагрузки с обеспеченностью $5 \cdot 10^{-4}$ в краткосрочном распределении при допустимых параметрах внешних условий, но не более $h_{3\%} = 7.0$ м.
- **2.3.4.4** В качестве расчетных значений ударных нагрузок на раскос ППБУ в режиме транспортировки принимаются их значения с обеспеченностью 10^{-6} в стационарном режиме волнения с допустимыми для режима транспортировки $h_{3\%}$ и T_{av} при данной $h_{3\%}$ в долговременном распределении и плавании на встречном волнении, но не более $h_{3\%}=7,0$ м.

2.3.5 Режимы установки на точку и снятия с точки.

Допускаемые внешние условия устанавливаются проектантом и подлежат согласованию с Регистром. Выполняется расчет прочности конструкции на соответствующие данному режиму нагрузки.

2.3.6 Нагрузка на палубы.

Расчетная нагрузка на палубы должна отражать наиболее неблагоприятную комбинацию функциональных нагрузок, указанных в <u>2.3.1</u>. В любом случае она н должна приниматься меньше величин, указанных в <u>табл. 2.3.6</u>.

Таблица 2.3.6

Назначение помещения/палубы	Интенсивность давления q , кПа
Жилые помещения, прогулочные палубы	4,5
Рабочие палубы	9,0
Складские помещения:	
общего назначения	7,85 ρh , но не менее 13,0
для цемента	9,81 ρh, но не менее 13,5
Примечание. h — высота укладки груза, м;	
ρ — массовая плотность груза, т/м³.	

2.3.7 Нагрузка на водонепроницаемые переборки.

Для обшивки и набора водонепроницаемых переборок балластных отсеков, грузовых танков или топливных бункеров расчетный напор, кПа, жидкости определяется по формуле

$$p = 9.81\rho(h_0 + h_p), \tag{2.3.7}$$

массовая плотность балласта, груза или топлива, т/м³; где

> вертикальное расстояние от расчетной до верхней точки рассматриваемого отсека, м;

высота воздушной трубы над верхней точкой отсека, м.

2.3.8 Ветровые нагрузки.

Ветровые нагрузки определяются по формуле

$$Q_w = 10^{-3} \rho_w(w_{10}^2/2) \sum_i S_i K_{1i} K_{2i}, \tag{2.3.8-1}$$

 Q_w равнодействующая сил ветра, кН;

массовая плотность воздуха, кг/м³; ρ_w

расчетная скорость ветра на высоте 10 м от уровня тихой воды при w_{10} десятиминутном осреднении, м/с;

площадь парусности *i*-го элемента, м²;

 S_i K_{1i} коэффициент, учитывающий изменение скорости ветра по высоте (см. 2.2.2.5

настоящей части);

 K_{2i} коэффициент сопротивления формы і-го элемента (соответствуют табл. 2.4.2.3 части IV «Остойчивость» Правил ПБУ.

Поскольку некоторые элементы рассматриваемых конструкций могут располагаться на некотором расстоянии друг от друга («прозрачные» конструкции), необходимо учитывать следующее:

перпендикулярной несколько элементов установлены в плоскости, направлению ветра, как в случае плоских ферм или колонн, следует учитывать коэффициент проницаемости ϕ . В этом случае ветровая нагрузка определяется по формуле

$$Q_{\phi} = Q_{w}\phi, \tag{2.3.8-2}$$

коэффициент проницаемости; где

если две или более параллельные конструкции, образующие рамы, установлены друг за другом в направлении действия ветра, необходимо учитывать коэффициент экранирования. В этом случае ветровая нагрузка определяется по формуле

$$Q_{w_s} = Q_w \eta_s, \tag{2.3.8-3}$$

коэффициент экранирования. где

Коэффициент экранирования зависит от коэффициента проницаемости ϕ , типа элемента и расстояния между конструкциями.

2.3.9 Гидродинамические нагрузки.

2.3.9.1 Волновые нагрузки на платформу и ее элементы определяются на основании уравнения Морисона. Для элемента одиночной преграды вектор удельных волновых нагрузок $\{Q\}$, т/м, определяется по формуле

$$\{Q\} = \frac{\rho_v dC_{sr}}{2} \{ |v - \dot{y}|(v - \dot{y})\} + \rho_v S\{\dot{v}\} + \rho_v (C_{in} - 1)(v - \ddot{y}), \tag{2.3.9.1}$$

где C_{sr} и C_{in} — коэффициенты скоростного и инерционного сопротивлений; ρ_{v} — массовая плотность воды, ${\rm Tc^2/m^4};$

S и d — площадь поперечного сечения, м², и диаметр преграды на уровне z от поверхности воды, м;

v и \dot{v} — орбитальная скорость, м/с, и ускорение частиц воды, м/с²;

 \dot{y} и \ddot{y} — скорость и ускорение элементов конструкции.

2.3.9.2 При больших диаметрах преграды d необходимо учитывать дифракционные эффекты. В <u>табл. 2.3.9.2</u> представлены рекомендуемые значения дифракционного коэффициента K_v ; при этом инерционная составляющая прямо пропорциональна K_v , а скоростная пропорциональна K_v .

Таблица 2.3.9.2

Относительный размер преграды d/λ	0,05	0,10	0,15	0,20	0,25	0,30	0,40
K_v	1,00	0,97	0,93	0,86	0,79	0,70	0,52

2.3.10 Нагрузки от течения.

Возможность совместного воздействия волнения и течения следует учитывать в соответствии с указаниями <u>3.1.5.2</u>.

Нагрузки от воздействия течения на ПБУ определяются в соответствии с указаниями <u>3.1.5.1</u>.

2.3.11 Комбинация внешних нагрузок.

- **2.3.11.1** При расчете прочности конструкции ПБУ в рассматриваемых расчетных режимах и оценке устойчивости ПБУ на грунте следует учитывать наиболее опасные сочетания нагрузок согласно 2.3.1 2.3.5.
- **2.3.11.2** При рассмотрении нагрузок окружающей среды следует учитывать тот факт, что возможно одновременное действие нескольких нагрузок среды.

Вопрос сочетания нагрузок должен решаться в связи с особенностями их статистической природы.

При экстремальном нагружении конструкции в отсутствие вероятностного анализа допускается использовать сочетания глобальных нагрузок согласно <u>табл. 2.3.11.2</u>.

Таблица 2.3.11.2

Вариант		Глобальные нагрузки окружающей среды				
сочетания	основная	сопутствующие				
		ледовая	волновая	ветровая	от течения	сейсмическая
1	экстремальная ледовая	_	ı	экстремальная ветровая	экстремальная от течения	_
2	экстремальная волновая	_	-	экстремальная ветровая	экстремальная от течения	_
3	экстремальная сейсмическая	среднестати- стическая ледовая	-	-	-	-

Вариант	Глобальные нагрузки окружающей среды					
сочетания	основная	сопутствующие				
		ледовая	волновая	ветровая	от течения	сейсмическая
4	экстремальная сейсмическая	-	среднестати- стическая волновая	-	-	_

2.3.12 Нагрузки от навалов при швартовке.

Должны быть учтены ударные нагрузки на морское сооружение, возникающие во время швартовки судов обеспечения, а также требования 3.8 части II «Корпус» Правил РС/К.

2.3.13 Нагрузки при буксировочных операциях.

Нагрузки на отдельные конструкции, возникающие при буксировочных операциях морского сооружения, определяются двумя составляющими:

постоянной, зависящей от скоростей движения установки относительно воды и ветра;

переменной, зависящей от волнения и относительных перемещений буксира и установки, обусловленных качкой на волнении.

При буксировке крупногабаритных элементов морского сооружения необходимо учитывать собственный момент инерции элемента.

2.4 КРИТЕРИИ ПРОЧНОСТИ

2.4.1 Общие требования.

2.4.1.1 Конструкция ПБУ должна быть спроектирована так, чтобы в течение ее срока службы выполнялось следующее общее требование безопасности:

$$\Phi \le R\eta,\tag{2.4.1.1}$$

где Ф – расчетное значение обобщенного силового воздействия (например, расчетные внутренние усилия, нормальные, касательные или эквивалентные напряжения, расчетные деформации, перемещения, расчетное давление на пластину и т.п.), по которому производится оценка предельного состояния:

Расчетное значение обобщенной несущей способности (расчетное сопротивление конструкции), устанавливаемое нормативными документами; это, как правило, расчетный предел текучести материала или предельное давление на элементы, ширина раскрытия трещин в бетоне и т.п.;

 η — коэффициент безопасности, который связан со степенью ответственности того или иного элемента конструкции за прочность и надежность сооружения.

2.4.1.2 При выполнении требования <u>2.4.1.1</u> практически должны быть исключены следующие виды опасного состояния:

чрезмерные деформации материала;

потеря устойчивости формы;

распространение усталостных трещин;

хрупкие разрушения.

Соответственно должны выдерживаться критерии предельной прочности, устойчивости и усталостной прочности.

- **2.4.1.3** Чтобы предотвратить возможность хрупкого разрушения конструкций, материал конструкции, конструктивное оформление узлов и сварка должны удовлетворять требованиям <u>1.4</u> и <u>1.5</u>.
 - 2.4.2 Критерий предельной прочности.
- 2.4.2.1 Критерий предельной прочности устанавливает требования, направленные на исключение возможности появления опасного состояния, связанного с развитием пластических деформаций и разрушением конструкции ПБУ в целом, отдельной корпусной конструкции или конструктивного элемента при разовом действии возможных в условиях эксплуатации наиболее неблагоприятных сочетаний нагрузок.
- **2.4.2.2** Критерий предельной прочности для режима выживания (экстремального воздействия) определяется выражением

$$\sigma_d \le \eta_1 R_d, \tag{2.4.2.2}$$

где σ_d – расчетные напряжения в конструкции при действии наиболее неблагоприятных сочетаний нагрузок, МПа;

 η_1 – коэффициент безопасности (см. 2.4.2.5);

 R_d — расчетный предел текучести материала согласно <u>1.5.1.5</u>, МПа.

- **2.4.2.3** Расчетные напряжения σ_d в конструктивных элементах в режиме выживания или экстремального нагружения определяются следующим образом:
- .1 при определении напряжений в расчетных сечениях балок набора и по середине поля пластины

$$\sigma_d = \sigma_e, \tag{2.4.2.3.1}$$

где
$$\sigma_e = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau^2};$$

 σ_x , σ_y и τ — компоненты напряжений в конструкции в рассматриваемой точке, каждый из которых учитывает совместное действие глобальных и локальных нагрузок;

.2 при определении напряжений на опорном контуре пластины

$$\sigma_d = \sigma_{pl},\tag{2.4.2.3.2}$$

где σ_{pl} – максимальные изгибные напряжения, определенные на опорном контуре, при действии локальных нагрузок.

2.4.2.4 Критерий предельной прочности для режимов рабочего и транспортировки определяется следующими выражениями:

$$\left. \begin{array}{l} \sigma_x \leq \eta_1 R_d, \\ \sigma_y \leq \eta_1 R_d, \\ \tau \leq 0.57 \eta_1 R_d; \end{array} \right\} \tag{2.4.2.4-1}$$

$$\sigma_{pl} \le \eta_1 R_d,\tag{2.4.2.4-2}$$

где σ_x , σ_y и τ – компоненты напряжений в конструкции в рассматриваемой точке, каждый из которых учитывает совместное действие глобальных и локальных нагрузок, МПа;

 σ_{pl} — максимальные изгибные напряжения в пластине, определенные на опорном контуре, при действии локальных нагрузок, МПа;

 η_1 – коэффициент безопасности (см <u>2.4.2.5</u>);

 R_d – расчетный предел текучести материала согласно <u>1.5.1.5</u>, МПа.

2.4.2.5 Коэффициенты безопасности η_1 по критерию предельной прочности должны быть не более значений, приведенных в <u>табл. 2.4.2.5</u>.

Таблица 2.4.2.5

Расчетные	Тип установки	Критерий	Конструктивные элементы			
режимы	(платформы)	прочности	специальные	основные	второстепенные	
Выживание или	ПБУ	(2.4.2.3.1)	0,8	0,84	0,86	
экстремальное	ПБУНС¹	(2.4.2.3.1)	0,75	0,8	0,83	
нагружение	ПБУ	(2.4.2.3.2)	1,3	1,4	1,5	
	ПБУНС¹	(2.4.2.3.2)	1,25	1,35	1,45	
Рабочий и	ПБУ1	(2.4.2.4-1)	0,63	0,68	0,80	
транспортировка	ПБУ1	(2.4.2.4-2)	1,02	1,14	1,25	
1 То же для МСГ	1.					

2.4.2.6 Дополнительные критерии предельной прочности, относящиеся конкретному типу ПБУ, а также необходимые пояснения к критериям формулах (2.4.2.3.1), (2.4.2.3.2), (2.4.2.4.-1) и (2.4.2.4.-2) содержатся в соответствующих пунктах разд. 3.

2.4.3 Критерий устойчивости.

2.4.3.1 Критерий устойчивости регламентирует требования к параметрам элементов конструкции ПБУ, обеспечивающим устойчивое состояние заданной формы. Опасными считаются критические напряжения, соответствующие переходу конструкции из одной формы равновесия в другую.

Критерий устойчивости определяется выражением

$$\sigma_x \le \eta_2 \sigma_{cr} \tag{2.4.3.2}$$

где расчетные напряжения в конструктивном элементе для заданного расчетного

> режима, МПа; критические напряжения, МПа;

коэффициент безопасности.

- 2.4.3.3 В расчетах устойчивости сжатых и изогнутых цилиндрических оболочек должно приниматься во внимание влияние геометрических несовершенств формы.
- Гибкость изолированных сжатых элементов λ должна удовлетворять условию

$$\lambda = l_e/\rho \le \lambda_{max} \tag{2.4.3.4}$$

эффективная длина стержня. мм: где

минимальный радиус инерции площади поперечного сечения, мм;

максимальная допускаемая гибкость согласно табл. 2.4.3.4.

Таблица 2.4.3.4

Нормативный предел текучести материала $R_{eH},$ МПа	Максимальная допускаемая гибкость λ_{max}
240	165
315	155
355	150
390	150
420	150
460	140
500	130

2.4.3.5 Коэффициент безопасности при проверке устойчивости изолированных сжатых элементов η_{20} должен быть не более

$$\eta_{20}=0,\!67,\;$$
 если $\lambda\geq\lambda_0;$ $\eta_{20}=0,\!84(1-0,\!2\lambda/\lambda_0),\;$ если $\lambda<\lambda_0;$ (2.4.3.5)

 $\lambda_0 = \sqrt{2\pi^2 E/R_{eH}};$ E — модуль нормальной упругости материала, МПа;

- модуль нормальной упругости материала, МПа.

2.4.3.6 Коэффициент безопасности η_2 стержней, подверженных совместному осевому сжатию и изгибу, должен удовлетворять следующему условию:

$$\eta_2/\eta_{20} + \sigma_{xbend}/[\sigma] \le 1,$$
(2.4.3.6)

где коэффициент безопасности согласно 2.4.3.5; действующее напряжение, вызванное изгибом, МПа;

 σ_{xbend} допускаемые напряжения, МПа, (согласно <u>2.4.2</u>, т. е. $[\sigma] = \eta_1 R_d$).

Коэффициент безопасности для плоских конструкций, загруженных по кромкам системой усилий, которые могут вызвать потерю устойчивости, должен определяться по формуле

$$\eta_2 = \sqrt{\sum_{i=1}^n (\sigma_i / \sigma_{i_{cr}})^2},$$
(2.4.3.7)

где

число простых форм напряжений, с помощью которых может быть представлено действительное напряженное состояние; примерами таких форм являются: сжатие в направлениях x, y; средние касательные напряжения;

действующие напряжения і-й формы; σ_i

 $\sigma_{i_{cr}}$ критические напряжения, соответствующие і-й форме напряжений, МПа.

Коэффициент безопасности η_2 должен приниматься равным:

 $\eta_2 = 0.8$ — для режимов выживания или экстремального нагружения;

 $\eta_2 = 0.6$ — для всех остальных режимов.

2.4.3.8 В расчетах устойчивости неподкрепленных (безнаборных) трубчатых элементов взаимосвязь общей и местной потери устойчивости может не учитываться: для элементов, подверженных изгибу и сжатию, при

$$D/t \le 0.1E/R_{eH}; \tag{2.4.3.8-1}$$

для элементов, подверженных изгибу, сжатию и действию избыточного наружного давления, при

$$D/t \le \sqrt{0.45E/R_{eH}},\tag{2.4.3.8-2}$$

 $\begin{array}{ccccc} D \text{ if } t & - & \text{cootbetctb} \\ E & - & \text{cm. } \underline{2.4.3.5}; \\ R_{eH} & - & \text{cm. } \underline{1.5.1.5}. \end{array}$ где соответственно средний диаметр и толщина, мм, стенки трубчатого элемента;

Если приведенные неравенства не выполняются, то в расчетах устойчивости трубчатого элемента следует учитывать взаимовлияние местной и общей потери устойчивости. Применяемые методы расчета должны быть согласованы с Регистром.

- Регистром может быть рассмотрен вопрос о возможности допущения потери устойчивости пластин горизонтальных настилов в отношении основных и второстепенных конструктивных элементов. В этом случае методы расчета и допускаемые напряжения должны быть обоснованы и согласованы с Регистром.
 - Критерий усталостной прочности.
- 2.4.4.1 Критерий усталостной прочности определяет требования, направленные на предотвращение появления в процессе эксплуатации опасных по возможным последствиям усталостных повреждений, обусловленных нестационарным изменением во времени эксплуатационных нагрузок различной интенсивности.

- 2.4.4.2 Расчет усталостной прочности выполняется для критических узлов, перечень которых согласовывается проектантом с Регистром.
- Проектирование конструкций платформ допустимо вести по критерию «безопасного повреждения», согласно которому реализация усталостного критерия ориентирована на стадию образования макротрещин, а не их развития. Критерий инициирования трещины базируется на гипотезе линейного суммирования повреждений

 $\sum_{i=1}^{i=K} n_i/N_i \leq \eta,$ (2.4.4.3)

число циклов напряжений при і-м уровне нагружения;

число циклов до появления трещины при *i* -м уровне нагружения;

число рассматриваемых уровней нагружения;

предельно допустимый уровень относительной повреждаемости.

- Предельно допустимый уровень относительной повреждаемости η зависит от класса конструктивного элемента (см. <u>1.4</u>), категории узла в пределах класса ответственности, степени доступа для инспекции и ремонта. Категория узла устанавливается проектантом.
 - Параметр η представляет собой произведение

 $\eta = \beta_1 \beta_2$;

значения β_1 и β_2 приведены в <u>табл. 2.4.4.5-1</u> и <u>2.4.4.5-2</u>. где

Таблица 2.4.4.5-1

Коэффициент β_1

Класс конструктивного	Категория рассматриваемого узла		
элемента	I	II	
Специальный	0,8	0,6	
Основной	0,9	0,8	
Второстепенный	1,0	1,0	

Таблица 2.4.4.5-2

Коэффициент β_2

Доступ при проверке и ремонте				
Нет доступа Плохой доступ Хороший доступ				
0,5	0,75	1,0		

- 2.4.4.6 Источником циклических нагрузок являются волны, ветер, течение, лед, сейсмика, вибрация механизмов. Исходными данными для каждого вида циклических нагрузок является повторяемость внешних условий (см. 2.2.1 — 2.2.6).
 - Уровень долговечности рекомендуется определять по формуле 2.4.4.7 для СПБУ —

$$T_{d} = N_{y} \sigma_{y}^{m} / \sum_{i} \sum_{j} \sum_{k} \frac{p_{ijk} \Gamma(1 + m/K_{ijk}) (1 + \beta_{ijk}) a_{v_{ijk}}^{m}}{T_{e_{ijk}}},$$
(2.4.4.7-1)

 $egin{array}{lll} N_y, \sigma_y, m & - & \mbox{параметры кривой усталости;} \ \sigma_y & - & \mbox{предел усталости на базе N_y cycles;} \end{array}$ где

m — тангенс угла наклона кривой усталости в осях $\lg \sigma - \lg N$. $T_{e_{ijk}}$ — эффективный период процесса волновых напряжений на ijk-ом стационарном режиме, характеризуемом i-й высотой волны 3-процентной обеспеченности, j-м средним периодом волнения, k-м курсовым углом к волне; повторяемость ijk-ого стационарного режима; K_{ijk} и $a_{v_{ijk}}$ — параметры формы и масштаба, соответственно, распределения напряжений (см. 3.1.4.9); (см. 3.1.3.6, 3.1.4.9); (гамма-функция.

В дополнение к формуле (2.4.4.7-1) суммарную усталостную повреждаемость D_{Σ} от волнения и ветра для конструкций СПБУ допустимо определять согласно зависимости

$$D_{\Sigma} = D_{wave} + D_{wind} + D_{vortex},$$

где $D_{wave}, D_{wind}, D_{vortex}$ – соответственно усталостные повреждаемости от волнения, пульсационной составляющей ветровой нагрузки и вихревой составляющей ветровой нагрузки;

для ППБУ —

$$T_d = N_y \sigma_y^m / \sum_i \sum_j \sum_k \frac{p_{ijk} 2^{m/2} \Gamma(1 + m/2) \sigma_{v_{ijk}}^m}{T_{e_{ijk}}},$$
(2.4.4.7-2)

где $\sigma_{v_{ijk}}$ – стандартное отклонение процесса напряжений на *ijk*-м стационарном режиме волнения.

Усталостную долговечность ПБУНС при волновых, сейсмических и переменных ледовых нагрузках, рекомендуется определять на базе аналитической зависимости

$$T_d = N_y \sigma_y^m / \sum_i \frac{p_i \Gamma(1 + m/K_i) a_i^m}{T_{e_i} \sigma_y^m},$$
 (2.4.4.7-3)

где T_{e_i} — эффективный период i-го процесса; a_i и K_i — параметр масштаба и формы i-го процесса (см. 3.1.2.1.4, 3.1.2.4.4, 3.1.2.3.3 и 3.1.2.3.5 части II «Корпус» Правил МСП); N_y , σ_y , m — параметры кривой усталости; σ_y — предел усталости на базе N_y циклов; m — тангенс угла наклона кривой усталости в координатах $\lg \sigma - \lg N$.

2.4.4.8 Для предварительных оценок опасности возникновения усталостных повреждений и определения основных размеров связей корпусных конструкций в качестве кривых усталости рекомендуется использовать модифицированные кривые усталости Регистра (см. <u>рис. 2.4.4.8-1</u> и <u>2.4.4.8-2</u>) в соответствии с принятой международной классификацией конструктивных типов узлов и соединений (классы В, С, D, E, F, F₂, G, W и T).

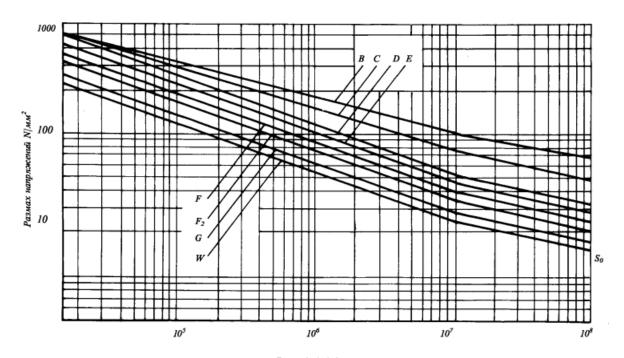


Рис. 2.4.4.8-1 Кривые усталости

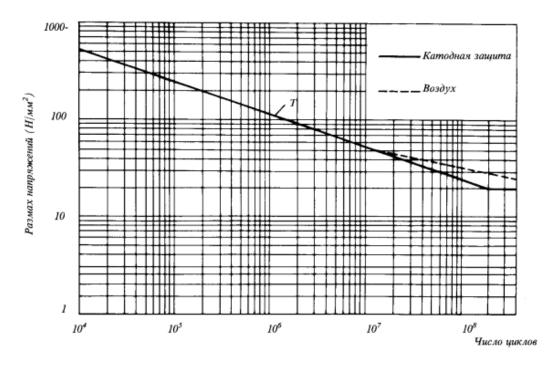


Рис. 2.4.4.8-2 Кривые S-N для трубчатых соединений

2.4.4.9 Кривые усталости относятся к толщинам материала 22 мм для плоских конструкций и 32 мм для трубчатых. Предел усталости для толщин элементов, отличных от базовых, определяется по формуле

$$\sigma_y^+ = \sigma_y (t_B/t)^{1/4},$$
 (2.4.4.9) где t_B^- — базовая толщина; t_B^- истинная толшина.

2.4.4.10 При расчете для основного металла расчетный размах напряжений в кривых усталости на <u>рис. 2.4.4.8-1</u> и <u>2.4.4.8-2</u> может быть уменьшен в зависимости от знака средних напряжений. Редукционный коэффициент μ , на который должен быть уменьшен размах напряжений, изображен на <u>рис. 2.4.4.10</u>.

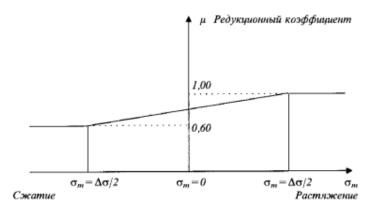


Рис. 2.4.4.10 Размах напряжений, используемых для кривых S-N. Основной металл

- **2.4.4.11** Уровень долговечности T_{ser} сооружения определяется заказчиком. Уровень расчетной долговечности T_d конструкций должен составлять $T_d \geq 1,1T_{ser}$.
- 2.4.4.12 При получении результатов оценок долговечности, выполненных в соответствии с 2.4.4.8 — 2.4.4.10, свидетельствующих о возможности возникновения преждевременных усталостных разрушений в сварных соединениях используемых типов конструкций, необходимо проведение более детальных расчетов усталостной прочности сварных соединений по одобренной Регистром методике, учитывающей технологические основные конструктивные И факторы И определяющие усталости. работоспособность сварных соединений при Необходимо осуществлять выбор конструктивного оформления сварных соединений и узлов корпуса. обеспечивающих требуемую расчетную долговечность, учитывающую применение специальных технологических методов повышения усталостной прочности соединений в соответствии с 2.8.7 части XIII «Сварка» Правил ПБУ.

2.5 ПОЛОЖЕНИЯ ПО РАСЧЕТАМ ПРОЧНОСТИ

2.5.1 Общие требования.

2.5.1.1 Расчеты прочности должны подразделяться на следующие этапы:

определение величин, характеристик и распределения расчетных глобальных и локальных нагрузок, их сочетаний для заданных режимов эксплуатации;

определение напряжений от глобальных и локальных нагрузок, суммирование напряжений;

определение величин расчетных напряжений или определение предельных нагрузок;

сопоставление расчетных величин с требованиями Правил ПБУ.

Все составные части расчета являются одинаково важными, и к их точности и обоснованности предъявляются одинаковые требования, такие же, как и ко всему расчету в целом.

- **2.5.1.2** Расчеты должны выполняться в соответствии с признанными методами. Там, где это приемлемо, могут использоваться положения Правил РС/К.
- **2.5.1.3** Идеализированная конструктивная модель должна отражать особенности конструкции: взаимное расположение и геометрию основных несущих элементов, геометрические характеристики сечений. При этом должно использоваться деление идеализированной модели конструкции на подсистемы различного уровня.

Требования к расчетным моделям приведены в <u>2.5.2 — 2.5.5</u> и <u>приложении 2</u>.

- **2.5.1.4** При расчете конструктивных элементов, находящихся в условиях многокомпонентного напряженно-деформированного состояния, допускается не учитывать те компоненты напряжений, величина которых меньше 10 % расчетного предела текучести материала.
- **2.5.1.5** Дополнительные положения по расчетам прочности, касающиеся морского сооружения конкретного типа, содержатся в соответствующих пунктах разд. 3.
 - 2.5.2 Определение общих напряжений.
- 2.5.2.1 Для определения общих напряжений (или напряжений от глобальных нагрузок), которые связаны с общими деформациями конструкции, должны быть разработаны модели конструкции морского сооружения, учитывающие ее макроособенности. Как правило, расчет напряженно-деформированного состояния конструкции выполняется на основе единой расчетной схемы, т.е. рекомендуется рассматривать конструкцию в целом.

Использование упрощенных расчетных схем (для частей конструкции) допускается в том случае, если обосновано их применение.

- В любом случае модель должна быть подробной настолько, насколько это необходимо для определения общих напряжений.
- **2.5.2.2** Расчет напряженно-деформированного состояния конструкции морского сооружения в целом рекомендуется выполнять по методу конечных элементов на базе стержневой, пластинчатой или пластинчато-стержневой идеализаций.
- **2.5.2.3** В расчетах прочности морского сооружения должно быть учтено взаимодействие конструкции с грунтом. При моделировании системы «конструкция морское дно» грунт может быть задан реактивными усилиями или упругими пружинами в узлах конечных элементов, которые в общем случае сопротивляются вертикальным и горизонтальным смещениям.
- **2.5.2.4** В том случае, если допускается потеря устойчивости пластин настилов при действии расчетных сжимающих напряжений (см. <u>2.4.3.9</u>), должно быть выполнено редуцирование гибких связей (пластин) по следующей схеме:

не подлежат редуцированию прилегающие к продольным и поперечным балкам части пластины шириной с каждой стороны балки по 0,25 от размера короткой стороны опорного контура пластины;

оставшаяся (редуцируемая) часть пластины вводится в расчет с редукционными коэффициентами:

$$\varphi_1 = \sigma_{x,cr}/\sigma_x, \ \varphi_2 = \sigma_{y,cr}/\sigma_y, \tag{2.5.2.4}$$

действующие в жестких связях общие сжимающие напряжения (абсолютные где величины) соответственно в продольном и поперечном направлениях;

критические напряжения гибких связей, вызывающие потерю устойчивости при их совместном воздействии.

После выполнения редуцирования гибких связей должны быть определены расчетные сжимающие напряжения в жестких связях во втором приближении. Если напряжения, определенные во втором приближении, отличаются от напряжений первого приближения менее чем на 5 %, дальнейших уточнений можно не производить. В противном случае делается третье приближение и т.п.

2.5.3 Расчет балочных систем.

2.5.3.1 В общем случае расчет балочных систем (перекрытий, рам) или отдельных элементов систем должен выполняться на базе расчетной схемы, учитывающей взаимовлияние смежных конструктивных элементов.

Для расчета перекрытия могут быть использованы стержневая (балочная), пластинчатая или пластинчато-стержневая модели. Использование упрощенных расчетных схем возможно в случае их обоснованности.

Моменты сопротивления и моменты инерции балок набора при выполнении расчетов должны определяться с учетом присоединенного пояска, толщина которого принимается равной его средней толщине в рассматриваемом поперечном сечении балки.

Ширина присоединенного пояска b_{fl} балок основного набора принимается равной меньшей из величин, определяемых по формулам:

$$b_{fl} = l/6;$$
 (2.5.3.2-1)

$$b_{fl} = 0.5(b_1 + b_2),$$
 (2.5.3.2-2)

пролет рассматриваемой балки набора между ее опорами, м; где

l — пролет рассматриваемой оалки набора от ближайших балок того же отстояния рассматриваемой балки набора от ближайших балок того же направления, расположенных по обе стороны от нее, м.

Ширина присоединенного пояска балок рамного набора определяется по формуле

$$b_{fl} = kb, (2.5.3.2-3)$$

где коэффициент, определяемый по $\underline{\mathsf{табл.}\ 2.5.3.2}$ в зависимости от b, the given length приведенной длины пролета балки l_{sp} и числа балок n поддерживаемых рассматриваемой балкой рамного набора.

Для свободно опертых по концам рамных балок приведенная длина пролета $l_{sp} = l$, для жестко заделанных балок $l_{sp} = 0.6l$. Условия опирания концов балок рамного набора (жесткая заделка, свободная опора) определяются исходя из общеинженерных принципов с учетом реальной конструкции (наличие книц, приварка стенок, поясков и т.п.), и характеризуются наличием или отсутствием действия изгибающего момента в опорном сечении балки.

Τá	า ก	П	И	П	а	2	5	.3	2
----	-----	---	---	---	---	---	---	----	---

	n	l_{sp}/b						
		1	2	3	4	5	6	7 и более
ا	≥6	0,38	0,62	0,79	0,88	0,94	0,98	1,0
	≤3	0,21	0,40	0,53	0,64	0,72	0,78	0,80

Примечание. Для промежуточных значений l_{sp}/b и n коэффициент k определяется линейной интерполяцией.

- **2.5.3.3** Площадь поперечного сечения балки основного или рамного набора, воспринимающая осевые усилия, должна определяться с учетом присоединенного пояска, ширина которого равна полусумме отстояний рассматриваемой балки набора от ближайших балок того же направления, расположенных по обе стороны от нее.
- **2.5.3.4** Площадь поперечного сечения стенки балки рамного набора должна определяться с учетом наличия вырезов в расчетном сечении (сечение нетто).
- **2.5.3.5** В качестве расчетных должны рассматриваться, как правило, сечения, где максимальны нормальные, касательные напряжения или их комбинация. В этих сечениях должно быть выполнено суммирование напряжений от общих и местных нагрузок с целью удовлетворения критериям прочности в формулах (<u>2.4.2.3.1</u>) и (<u>2.4.2.4-1</u>).

2.5.4 Расчет пластин.

Расчет пластин обшивки (настила) производится в предположении их жесткой заделки на опорном контуре. Расчетная нагрузка принимается, как правило, равномерно распределенной по полю пластины.

На основании этого расчета определяются изгибные нормальные напряжения по середине поля пластины, которые суммируются с общими напряжениями в конструкции с целью удовлетворения критерию прочности в формуле (2.4.2.3.1), и максимальные изгибные напряжения на опорном контуре с целью удовлетворения критериям прочности в формулах (2.4.2.3.2) и (2.4.2.4-2).

2.5.5 Устойчивость конструктивных элементов.

- **2.5.5.1** Расчеты устойчивости выполняются с целью удовлетворения критериям <u>2.4.3</u>. В расчетах устойчивости конструктивных элементов рекомендуется использовать расчетные схемы, учитывающие взаимовлияние смежных конструктивных элементов. В противном случае конструктивный элемент (балка набора, элемент балки, пластина и т.п.) должен рассматриваться как свободно опертый по контуру.
- **2.5.5.2** При определении величины критических напряжений следует учитывать отступление от закона Гука. В этом случае критические нормальные напряжения σ_{cr} определяются по формулам:

$$\sigma_{cr} = \sigma_e$$
 при $\sigma_e \le 0.6R_{eH}$; (2.5.5.2-1)

$$\sigma_{cr} = R_{eH}(1,113 - 0.32R_{eH}/\sigma_e)$$
 при 0,6 $R_{eH} < \sigma_e < 2.4 R_{eH};$ (2.5.5.2-2)

$$\sigma_{cr} = R_{eH}$$
 при $\sigma_e \ge 2.4 R_{eH}$, (2.5.5.2-3)

где σ_{e} – эйлерово нормальное напряжение, МПа.

При определении величины касательных напряжений следует учитывать, что предел текучести стали по касательным напряжениям $\tau_T = 0.57 R_{eH}$.

2.5.5.3 В случае, если конструктивные элементы подвержены осевому сжатию или совместному действию сжатия и изгиба, то они должны отвечать следующему требованию:

```
(2.5.5.3)
\sigma_a/\sigma_a^* + \sigma_{ab}/\sigma_{ab}^* \le 1.0,
                          расчетное осевое сжимающее напряжение, МПа;
где
                         расчетное сжимающее напряжение при изгибе, МПа;
            \sigma_{ab}^* = \sigma_i^* или \sigma_b^* —
                                      для изгибного напряжения МПа;
                 \sigma_i^* = \eta R_{eH}
                                         дня осевого напряжения при изгибе МПа;
                                         для сжатия или изгиба МПа;
                  \sigma_b^* = \eta \sigma_{cr}
                                          критическое напряжение при потере устойчивости при сжатии;
            \sigma_a^* = \eta \sigma_{cr,i} (1 - 0.13 \lambda/\lambda_0), если \lambda < \lambda_0;
            \sigma_a^* = \eta \sigma_{cr,e} \cdot 0,87, если \lambda \geq \lambda_0;
                  \sigma_a^* — не должна превышать \sigma_{ab}^*;
                  \eta =0,6 — для статических нагрузок;
                  \eta = 0.8 — для совместных нагрузок;
                 \lambda = l_e/\rho;
                 \lambda_0 = \sqrt{2\pi^2 E/\sigma_{\nu}};
                                  критическое напряжение сжатого стержня в пластической стадии, МПа;
                  \sigma_{cr.i} –
                  \sigma_{cr,e}
                                  критическое напряжение сжатого стержня до предела упругости, МПа;
                                  эффективная длина стержня, мм, согласно формуле (2.4.3.4);
                                  минимальный радиус инерции площади поперечного сечения, мм;
                                  модуль нормальной упругости материала, МПа;
                                  минимальный предел текучести материала при растяжении, МПа.
```

- **2.5.5.4** Обеспечение местной устойчивости элементов балки набора (стенки, свободного пояска), установка местных подкреплений должны производиться в соответствии с Правилами РС/К.
 - 2.5.6 Расчет прочности вертолетной площадки.
- 2.5.6.1 Размеры связей вертолетной площадки и поддерживающих ее опорных конструкций определяются в соответствии с 6.2 части XVII «Дополнительные знаки символа класса и словесные характеристики, определяющие конструктивные и эксплуатационные особенности судна» Правила РС/К.

3 СПЕЦИАЛЬНЫЕ ВОПРОСЫ ПРОЧНОСТИ ПЛАТФОРМ

3.1 САМОПОДЪЕМНЫЕ ПБУ

3.1.1 Общие требования.

3.1.1.1 Прочность конструкции СПБУ в соответствии с критериями <u>2.4</u> должна проверяться для пяти расчетных режимов:

выживания;

рабочего;

транспортировки;

установки на точку;

снятия с точки

Коэффициенты безопасности и критерии прочности для режимов установки на точку и снятия с точки (задавливание и выдергивание опорных колонн) должны приниматься, как для режима выживания.

3.1.1.2 СПБУ должна иметь клиренс, м, не менее:

$$h_c \ge 0.6h_{50} + \Delta h_{50} + 1.50,$$
 (3.1.1.2)

где h_{50} — экстремальная высота волны (1 раз в 50 лет) для данного района моря, м; Δ_{50} — экстремальный (1 раз в 50 лет) прилив в данной акватории, м.

3.1.1.3 Требуемая высота расположения $H_{h.d.}$, м, вертолетной площадки СПБУ над ватерлинией спокойной воды, когда ПБУ подготовлена к состоянию перехода продолжительностью сутки и более, определяется по формуле

$$H_{h.d.} = 1.80/10^{-3}q^{2.5} + 3(x/q) + 2(h_{50}/12 - 1) + 1.2(\tau - 1)^{0.7},$$
 (3.1.1.3)

где

 $q = \sqrt[3]{\Delta}$;

Δ – объемное водоизмещение ПБУ в состоянии перехода, м³;

 отстояние наиболее удаленной кромки вертолетной площадки от положения центра тяжести ПБУ по длине корпуса, м;

 h_{50} — h высота волны с повторяемостью 1 раз в 50 лет, м;

au — продолжительность перехода, сут., но не более четырех.

- **3.1.1.4** Ветровые, волновые и сейсмические нагрузки должны определяться для наиболее неблагоприятного угла распространения волн и угла атаки ветра.
- **3.1.1.5** При выполнении динамических расчетов прочности СПБУ низшая собственная частота (c^{-1}) изгибных колебаний определяется по формуле

$$p = \sqrt{\frac{12n_k E J_k (1 - G_p / n_k P_e) g}{l^3 (4 - 3x) (G_p + 0.5n_k G_k)}} \eta_d, \tag{3.1.1.5}$$

где

 n_k — число опорных колонн;

E – модуль упругости материала колонн, к Π а;

 J_k – приведенный момент инерции площади сечения опорной колонны относительно главной центральной оси (см. 3.1.2.3), м⁴;

 G_p – масса понтона, кH;

 G_k — масса одной опорной колонны, кH;

 $P_e = \frac{\pi^2 E J_k}{4l^2} (3 æ + 1)$ — эйлерова нагрузка на опорную колонну в составе пространственной рамы, кH;

g – ускорение свободного падения, м/ c^2 ;

 расчетная длина опорной колонны, равная отстоянию пяты опорной колонны до середины расстояния между горизонтальными упорами в понтоне, м;

æ – коэффициент опорной пары, см. 3.1.2.2;

 η_d — поправочный коэффициент влияния закрепления опорных колонн в понтоне, см. 3.1.2.4.

3.1.2 Расчетная конструктивная схема СПБУ.

3.1.2.1 При оценке напряженного состояния используется идеализация конструкций на нескольких уровнях (см. <u>рис. 3.1.2.1</u>): конструктивная рама («суперэлемент»); расчетный район опорной колонны.

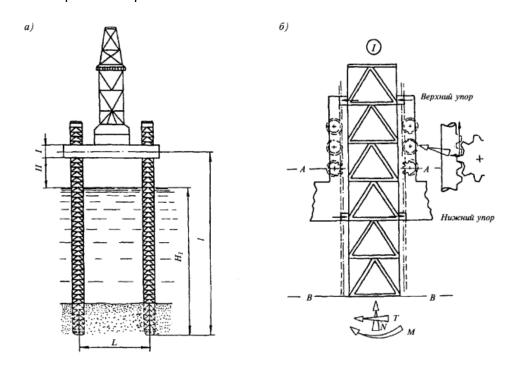


Рис. 3.1.2.1 Идеализация конструкций СПБУ различных уровней; а) конструктивная рама («суперэлемент»); б) расчетный район (//) опорной колонны

3.1.2.2 Взаимодействие опорных колонн с грунтом оценивается коэффициентом опорной пары æ, характеризующим степень заделки опорных колонн по отношению к повороту их в грунте. При изгибе колонн по низкочастотной форме значение зависит от параметров колонн установки и грунта согласно формуле

$$x = 1/(1 + AEJ_k/l), (3.1.2.2)$$

где A – коэффициент пропорциональности между опорным моментом и углом поворота опорной пяты $\underline{3.1.2.5};$

 $E, l, J_k, -$ cm. 3.1.1.5.

3.1.2.3 Момент инерции площади решетчатой опорной колонны J_k соотносится с моментом инерции идеального профиля всех продольных элементов, входящих в состав колонны, как

$$J_k = J_u/\mu,$$
 (3.1.2.3)

где J_u – момент инерции идеального профиля, м⁴;

 приведенная жесткостная характеристика, зависящая от типа конструктивного модуля, геометрических характеристик его элементов и относительной длины опорной колонны.

3.1.2.4 Поправочный коэффициент η_d зависит от расстояния d, м, между нижним и верхним горизонтальными упорами, от соотношения изгибной и сдвиговой жесткости опорной колонны (B — ширина опорной колонны, м), от степени заделки опорных колонн в грунте $\mathfrak E$ (см. рис. 3.1.2.4).

В случае нестандартной установки механизма подъема (например, без амортизаторов) допустимо представить в Регистр для согласования специальный расчет района расположения опорной колонны в портале с корректировкой частот колебаний и перераспределением нагрузок между механизмами и опорами.

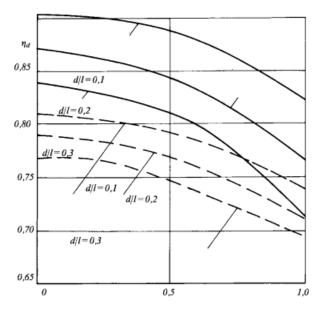


Рис. 3.1.2.4 Зависимость поправочного коэффициента η_d от параметров æ, d/l, B/l B/l = 0,1 — B/l = 0,2

3.1.2.5 Коэффициенты податливости *A* определяются по формулам: при вертикальных колебаниях —

$$A = (1 - v)/4Gr_0; (3.1.2.5-1)$$

при горизонтальных колебаниях —

$$A = (2 - v)/8Gr_0; (3.1.2.5-2)$$

при вращательных колебаниях —

$$A = 3(1 - v)/8Gr_0^3; (3.1.2.5-3)$$

при крутильных колебаниях —

$$A = 3/16Gr_0^3, (3.1.2.5-4)$$

где G — модуль сдвига грунта, МПа; v — коэффициент Пуассона; r_0 — радиус основания, м.

Если основание прямоугольное со сторонами $B \times L$, то вводится эквивалентный радиус

$$r_0 = \sqrt{BL/\pi}$$
 — для вертикальных и горизонтальных колебаний;
$$r_0 = \sqrt[4]{BL^3/3\pi}$$
 — для вращательных колебаний вокруг горизонтальной оси;
$$r_0 = \sqrt[4]{BL^3(B^2 + L^2)/\pi}$$
 — для крутильных колебаний.

Для опор с заглублением, слой скольжения которых расположен на глубине, коэффициент податливости при вращательных колебаниях определяется по формуле

$$A = 3(1 - v)/16Gr_0^3. (3.1.2.5-5)$$

3.1.2.6 Наиболее нагруженным районом опорной колонны является область, расположенная в пределах между верхней и нижней направляющими, там, где нагрузки с колонн передаются на корпус.

Изгибающий момент в этом районе формируется частично горизонтальными усилиями от направляющих и частично вертикальными усилиями от механизма подъема. Относительный вклад вертикальных (M_v) и горизонтальных (M_h) усилий определяется параметром β :

$$\beta = M_v / (M_v + M_h). \tag{3.1.2.6-1}$$

При анализе общей прочности жесткость корпуса обычно можно принимать бесконечно большой по сравнению с жесткостью колонн. Опорный механизм представляется пружиной вращения с вращательной жесткостью K_m . В этом случае параметр β следует определять по формуле

$$\beta = \frac{1}{1 + \Delta_{z_g} GF_c/K_m},\tag{3.1.2.6-2}$$

где G — модуль сдвига материала колонны; F_c — сдвиговая площадь колонны, M^2 ; Δ_{z_g} — расстояние между верхней и нижней направляющими, м; $K_m = \frac{1}{2}Kb^2$, (3.1.2.6-3) где $K = \frac{1}{1/K_{bend} + 1/K_{shear}}$; K_{bend} — изгибная жесткость колонны:

 K_{bend} — изгибная жесткость колонны; K_{shear} — сдвиговая жесткость колонны.

3.1.3 Ветровые нагрузки.

- **3.1.3.1** Ветровые нагрузки определяются по формулам (2.3.8-1) (2.3.8-3).
- **3.1.3.2** Динамичность приложения ветровых нагрузок рекомендуется учитывать, начиная с периода собственных изгибных колебаний первого тона $\tau=130/\overline{w}_{10}$, с.

В этом случае используется коэффициент динамичности K_w , согласно рис. 3.1.3.2, на котором

$$v_w = \omega_{max}/p; \tag{3.1.3.2}$$

где $\omega_{max} = 4 \cdot 10^{-3} \overline{w}_{10}$ модальная частота спектральной плотности пульсаций ветра; p — частота собственных изгибных колебаний СПБУ;

 δ_w/π — относительный декремент колебаний СПБУ.

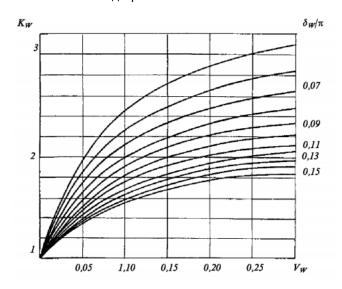


Рис. 3.1.3.2 Коэффициент динамичности ветровых нагрузок

3.1.3.3 При учете пульсационной составляющей ветровых нагрузок несинхронность их действия оценивается коэффициентом η .

Коэффициент несинхронности ветровых нагрузок η определяется по следующей формуле:

$$\eta = \frac{\sum_{i} K_{li} K_{2i} S_{i} r_{i}}{\sum_{i} K_{li} K_{2i} S_{i}},\tag{3.1.3.3}$$

где

- r; коэффициенты корреляции между ветровыми давлениями на конструкции:
- а) протяженные по ширине и высоте установки;
- б) установленные вдоль направления действия ветра.

В первом приближении обобщенный коэффициент неоднородности ветровых давлений принимается как $\eta=0.8$.

3.1.3.4 На каждом стационарном режиме определяются значения внутренних усилий статических воздействий ветра:

для четырехопорной СПБУ —

$$\overline{M_{w}}=0.09\overline{Q_{w}}l(2-æ)$$
 — изгибающий момент;
$$\overline{T_{w}}=0.18\overline{Q_{w}},$$
 — перерезывающая сила;
$$\overline{N_{w}}=0.18\overline{Q_{w}}\frac{l}{l}(2-æ)$$
 — осевая сила;
$$(3.1.3.4-1)$$

для трехопорной СПБУ —

$$\overline{M_w} = 0.165 \overline{Q_w} l(2-x)$$
 — изгибающий момент;

$$\overline{T_w} = 0.33\overline{Q_w}$$
, — перерезывающая сила; (3.1.3.4-2)

$$\overline{N_w}=0.58\overline{Q_w}\frac{l}{L}(2-x)$$
 — осевая сила,

 $\overline{Q_w}$ – значение Q_w при $w_{10}=\overline{w}_{10}$, см. формулы (2.3.8-1) — (2.3.8-3); – расстояние в свету между опорными колоннами, см. <u>рис. 3.1.2.1</u>. где

На каждом стационарном режиме определяются стандартные отклонения составляющих внутренних усилий ветровых пульсаций:

для четырехопорной СПБУ —

$$\sigma_{M}^{w} = 0.18 \overline{Q_{w}} \eta l(2 - \mathfrak{X}) \vartheta_{w} K_{w};$$

$$\sigma_{T}^{w} = 0.36 \overline{Q_{w}} \eta \vartheta_{w} K_{w};$$
(3.1.3.5-1)

 $\sigma_M^w = 0.36 \overline{Q_w} \eta_I^l (2 - æ) \vartheta_w K_w;$

для трехопорной СПБУ —

$$\sigma_M^W = 0.33 \overline{Q_W} \eta l(2 - \mathfrak{X}) \vartheta_W K_W;$$

$$\sigma_T^W = 0.66 \overline{Q_W} \eta \vartheta_W K_W;$$
(3.1.3.5-2)

$$\sigma_M^w = 1.15 \overline{Q_w} \eta \frac{l}{L} (2 - \mathfrak{X}) \vartheta_w K_w,$$

где коэффициент изменчивости ветровых пульсаций, равный $\vartheta_w = 2.45 \sqrt{K_{fr}}$; коэффициент лобового сопротивления подстилающей см. табл. 2.2.2.4-1.

Параметр масштаба a_{w} внутренних усилий от воздействия ветра 3.1.3.6 оценивается как

$$a_w = 0.85\sigma_w.$$
 (3.1.3.6)

3.1.4 Волновые нагрузки.

Волновые нагрузки на элементы опорных колонн СПБУ определяются в 3.1.4.1 соответствии с 2.3.9.1. Значения коэффициентов инерционного \mathcal{C}_{in} и скоростного \mathcal{C}_{sr} сопротивления для сечений круглой и прямоугольной формы должны быть не менее указанных на <u>рис. 3.1.4.1</u>. При наличии рейки коэффициент сопротивления \mathcal{C}^{r}_{drag} рекомендуется определять по формуле

$$C_{drag}^r = C_{sr} + 4 \frac{a + b/2}{p},\tag{3.1.4.1}$$

диаметр цилиндра;высота основания зуба;высота зуба рейми

высота зуба рейки.

Для более сложных форм расчетные значения коэффициентов \mathcal{C}_{in} и \mathcal{C}_{sr} подлежат согласованию с Регистром.

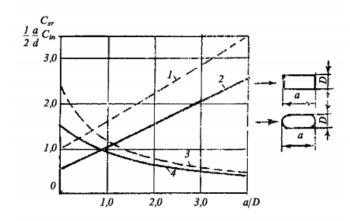


Рис. 3.1.4.1 Коэффициенты скоростного C_{sr} (3, 4) и инерционного C_{in} (1,2) сопротивления сечений:

——эллиптических (круглыхa/D=1);

———— прямоугольных

- **3.1.4.2** При расчете волновых нагрузок должно быть учтено влияние обрастания конструкций, проявляющееся в увеличении приведенных размеров сечений и коэффициентов C_{in} и C_{sr} .
- **3.1.4.3** Динамичность приложения волновых нагрузок оценивается с помощью графиков, изображенных на <u>рис. 3.1.4.3</u>. Здесь $\overline{\omega}$ средний период поверхностного волнения, p частота собственных изгибных колебаний, δ/π относительный декремент колебаний.

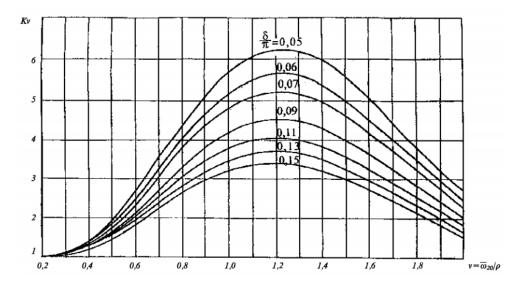


Рис. 3.1.4.3

Коэффициент динамичности скоростной и инерционной составляющих волновой нагрузки

3.1.4.4 Гидродинамические нагрузки на модуль опорной колонны, состоящий из набора вертикальных, горизонтальных и наклонных связей, определяются

поэлементным суммированием гидродинамических нагрузок с учетом расположения связей в пространстве, что равносильно введению коэффициентов влияния на волновую нагрузку горизонтальных и наклонных связей μ_{sr} и μ_{in} :

$$\mu_{sr} = 1 + \frac{\sum_{i=1}^{n_{\Sigma}} n_{i} d_{i} l_{i} C_{sr}^{i}(\theta_{i}) \cos^{2} \theta_{i}}{n_{B} d_{B} \Delta z C_{sr}^{B}}; \tag{3.1.4.4-1}$$

$$\mu_{in} = 1 + \frac{\sum_{i=1}^{n_{\sum}} n_{i} d_{i}^{2} l_{i} C_{in}^{i}(\theta_{i}) \cos \theta_{i}}{n_{B} d_{B} \Delta z C_{in}^{B}},$$
(3.1.4.4-2)

где

 d_B — поперечный размер вертикальной реики, м, n_Σ — общее число горизонтальных и наклонных связей; $d_i,\ l_i$ — соответственно диаметр и длина наклонных и горизонтальных связей, м; Δz — высота модуля, м; θ_i — угол, образованный наклонной связью с плоскостью, градованный направлению распространения волны; град.,

 C_{sr}^{B} , C_{in}^{B} — коэффициенты скоростного и инерционного сопротивления вертикальных связей (несущих реек);

 $\mathcal{C}^i_{sr},\,\mathcal{C}^i_{in}$ - коэффициенты скоростного и инерционного сопротивления наклонных и горизонтальных связей.

Значения \mathcal{C}_{sr}^{B} , \mathcal{C}_{in}^{B} , μ_{sr} , μ_{in} должны определяться для расчетного курсового угла $arphi_d$ согласно 3.1.4.6.

3.1.4.5 Допускается пренебрегать в расчетах волновой нагрузки: инерционным компонентом, если

$$h_3 \ge 8.5 d_B C_{in}^B \cdot \bar{u}_{in} / C_{sr}^B \mu_{sr} \bar{u}_{sr};$$
 (3.1.4.5-1)

скоростным компонентом, если

$$h_3 \le 2.1 d_B C_{in'}^B, \bar{u}_{in'} / C_{sr}^B \mu_{sr} \bar{u}_{sr},$$
 (3.1.4.5-2)

 $ar{u}_{in}$ и $ar{u}_{sr}$ – значения ординат формы колебаний опорных колонн СПБУ на уровне аппликаты

равнодействующих волновых давлений, соответствующих инерционной и

скоростной составляющим:

где

 $\bar{u}_{in} = \bar{u}$ при $z = z_{in} = H_1(1 - \Phi)$, $\bar{u}_{sr} = \bar{u}$ при $z = z_{sr} = H_1(1 - \Phi/2)$,

$$\overline{u} = \frac{6(1-x)}{4-3x} \cdot \frac{z}{l} + \frac{3x}{4-3x} - \frac{2}{4-3x} (z/l)^3;$$

z — отсчитывается от опорной пяты вверх, м;

 $\Phi = g/H_1\omega_0^2$;

 $\overline{\omega_0}$ – средняя частота поверхностного волнения;

 H_1 – расстояние от пяты опорной колонны до уровня спокойной

3.1.4.6 Напряженное состояние конструкций СПБУ оценивается для наиболее неблагоприятных курсовых углов, называемых в дальнейшем расчетными. Расчетные курсовые углы φ_d оцениваются по следующим формулам:

для четырехопорной СПБУ —

$$\varphi_d = \frac{\pi}{4}(2i-1), i = 1, 2, 3, 4;$$
 (3.1.4.6-1)

для трехопорной СПБУ —

$$\varphi_d = \frac{\pi}{3}(2i-1), i = 1, 2, 3,$$
 (3.1.4.6-2)

где і – номер направления.

3.1.4.7 Значения стандартов скоростных составляющих волновых нагрузок для расчетных курсовых углов определяются согласно зависимостям:

для четырехопорной установки —

$$\sigma_{M}^{sr} = 0.35\overline{u_{sr}}\sigma_{Q}^{sr}K_{v}l(2-\mathfrak{E})\gamma_{4};$$

$$\sigma_{T}^{sr} = 0.70\overline{u_{sr}}\sigma_{Q}^{sr}K_{v}\gamma_{4};$$

$$\sigma_{N}^{sr} = 0.70\overline{u_{sr}}\sigma_{Q}^{sr}K_{v}l/L(2-\mathfrak{E})\gamma_{4};$$

$$(3.1.4.7-1)$$

для трехопорной установки —

$$\sigma_M^{sr} = 0.5 \overline{u_{sr}} \sigma_Q^{sr} K_v l(2 - \mathfrak{X}) \gamma_3;$$

$$\sigma_T^{sr} = \overline{u_{sr}} \sigma_Q^{sr} K_v \gamma_3;$$
(3.1.4.7-2)

$$\sigma_N^{sr} = 1.7 \overline{u_{sr}} \sigma_Q^{sr} K_v l / L(2 - \mathfrak{E}) \gamma_3,$$

где $\sigma_Q^{sr} = 1{,}34 \cdot 10^{-2} m_k C_{sr}^B \mu_{sr} \gamma d_B h_3^2;$

 m_k — число вертикальных связей;

 K_v^{∞} — коэффициент динамичности волновых нагрузок, определяемый порис. 3.1.4.3;

 γ_3 и γ_4 — f коэффициенты влияния расстояния между опорными колоннами на волновую нагрузку;

$$\gamma_4 = \frac{1}{\sqrt{2}} \sqrt{1 + \cos(\overline{\omega}^2 L_4/g)};$$

$$\gamma_3 = \frac{1}{\sqrt{2}} \sqrt{1 + \cos(\overline{\omega}^2 L_3/g)};$$

$$L_4 = \sqrt{2}L;$$

$$L_3 = (\sqrt{3}/3)L.$$

3.1.4.8 Статистические характеристики внутренних усилий в конструкциях опорных колонн, отвечающие инерционной составляющей волновой нагрузки для

курсовых углов, указанных в <u>3.1.4.6</u>, определяются по формулам (<u>3.1.4.7-1</u>) и (<u>3.1.4.7-2</u>) с заменой в них $\overline{u_{sr}}$ на $\overline{u_{in}}$, σ_Q^{sr} на

$$\sigma_Q^{in} = 18.7 \cdot 10^{-2} m_k C_{in}^B \mu_{in} Sh_3, \tag{3.1.4.8}$$

где S – площадь контура сечения вертикальной связи, м².

3.1.4.9 В зависимости от величины соотношения

$$\frac{\sigma_{in}}{\sigma_{sr}} = \frac{6.2\sqrt{S}\mu_{in}C_{in}^B\overline{u}_{in}}{h_3\mu_{sr}C_{sr}^B\overline{u}_{sr}}$$
(3.1.4.9-1)

по графикам на <u>рис. 3.1.4.9</u>, а и б определяются параметры распределения статических внутренних усилий a_{v_0} и k_0 от воздействия волн на каждом стационарном режиме. Параметр $\sigma_{Q_{sr}}$ на <u>рис. 3.1.4.9</u> определяется по <u>рис. 3.1.4.13-1</u>.

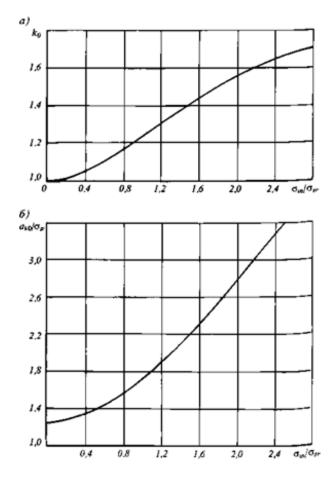


Рис. 3.1.4.9 Зависимость параметров распределения Вейбулла k_0 и a_{v_0} от соотношения σ_{in}/σ_{sr}

Статические значения a_{v_0} и k_0 уточняются за счет динамических эффектов по формулам:

$$k = k_0 + \frac{(2 - k_0)v^4}{1 + (1 - v)^4};$$
(3.1.4.9-2)

$$a_v = a_{v_0} 5^{1/k_0 - 1/k},$$
 (3.1.4.9-3) где $v = \overline{\omega}/p.$

3.1.4.10 На каждом стационарном режиме определяются экстремальные значения переменных внутренних усилий в расчетном сечении опорной колонны при совместном воздействии волнения и ветра:

$$M_{e_{ij}} = a_{v_{M_{ij}}} \left[\ln n_{ij} (1 + \beta_{ij}) \right]^{1/K_{ij}}; \tag{3.1.4.10-1}$$

$$T_{e_{ij}} = a_{\nu_{T_{ij}}} \left[\ln n_{ij} (1 + \beta_{ij}) \right]^{1/K_{ij}}; \tag{3.1.4.10-2}$$

$$N_{e_{ij}} = a_{v_{N_{ij}}} \left[\ln n_{ij} (1 + \beta_{ij}) \right]^{1/K_{ij}}, \tag{3.1.4.10-3}$$

где $a_{v_{M_{ij}}}, a_{v_{T_{ij}}}, a_{v_{N_{ij}}}$ — параметры распределения волновых изгибающих моментов, перерезывающих и осевых сил соответственно; $\beta_{ij} = a_{w_{ij}}/a_{v_{ij}};$ $n_{ij} = 10^8 p h_3 \bar{\tau}$ — объем выборки, соответствующий стационарному режиму с повторяемостью:

 $n_{ii} = 10^6 p h_3 \bar{\tau}$ — объем выборки для рабочего режима.

добавляются к полученным в 3.1.4.10 величинам:

3.1.4.11 На каждом стационарном режиме определяются значения внутренних усилий с учетом статических воздействий ветра и веса понтона, сил от течения, которые

$$M_{\Sigma} = M_e + M_p + \overline{M}_w + M_c; \tag{3.1.4.11-1}$$

$$T_{\Sigma} = T_e + \bar{T}_w + T_c;$$
 (3.1.4.11-2)

$$N_{\Sigma} = N_e + N_p + \overline{N}_w + N_c, \tag{3.1.4.11-3}$$

где M_p и N_p — соответственно изгибающие моменты и осевые силы от веса понтона; M_e , T_e , N_e — см. $\frac{3.1.4.10}{3.1.3.4}$; M_c , T_c , N_c , — см. $\frac{3.1.3.4}{3.1.5}$.

- **3.1.4.12** Наибольшее из значений величин, определенных в <u>3.1.4.11</u>, является расчетным.
- **3.1.4.13** В условиях мелководья стандартное отклонение для инерционной составляющей волновой нагрузки σ_Q^{in} на одну опорную колонну определяется по формуле

$$\sigma_Q^{in} = 18.7 \cdot 10^{-2} m_k C_{in}^B \mu_{in} S h_3 \cdot t h \bar{k} H,$$
 (3.1.4.13)

стандартное отклонение скоростной составляющей волновой нагрузки σ_Q^{sr} на одну опорную колонну определяется согласно графику на <u>рис. 3.1.4.13-1</u>.

Аппликаты приложения равнодействующих Q_{sr} и Q_{in} (отсчитываются от уровня воды) определяются по <u>рис. 3.1.4.13-2</u> и <u>3.1.4.13-3</u> соответственно.

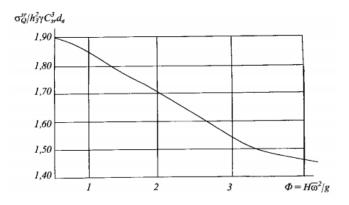


Рис. 3.1.4.13-1 Зависимость $\sigma_Q^{sr}/h_3^2\gamma \mathcal{C}_{sr}^3 d_B$ от параметра $\Phi=H\overline{\omega}^2/g$

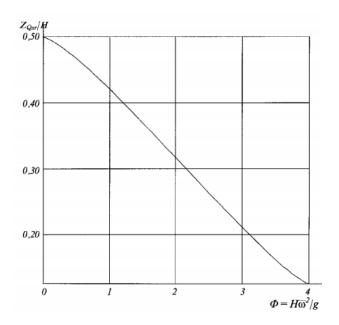


Рис. 3.1.4.13-2 Зависимость $Z_{Q_{sr}}/H$ от параметра $\Phi=H\overline{\omega}^2/g$

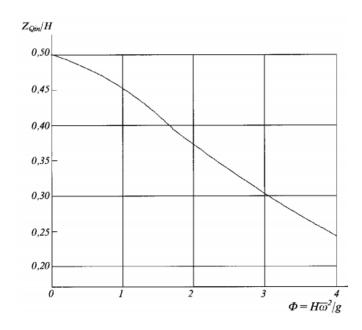


Рис. 3.1.4.13-3 Зависимость $Z_{Q_{in}}/H$ от параметра $\Phi=H\overline{\omega}^2/g$

3.1.5 Нагрузки от течения.

3.1.5.1 В произвольном поперечном сечении опорной колонны внутренние усилия от постоянной составляющей течения равны:

для трехопорной СПБУ ($\varphi = 60^{\circ}$) —

$$M_c = (Q_c \bar{u}_c l/2) \left(2\frac{z}{l} - \varpi\right);$$

$$N_c = \left(2\sqrt{3}Q_c \bar{u}_c l/L\right) (2 - \varpi);$$

$$T_c = Q_c \bar{u}_c;$$
(3.1.5.1-1)

для четырехопорной СПБУ ($\varphi=0^{\circ}$) —

$$M_c = \left(\sqrt{2}Q_c\bar{u}_cl/4\right)\left(2\frac{z}{l} - \mathfrak{E}\right);$$

$$N_c = \left(2Q_c\bar{u}_cl/L\right)(2 - \mathfrak{E});$$

$$T_c = Q_c\bar{u}_c,$$

$$(3.1.5.1-2)$$

где $Q_c = \rho \mathcal{C}_{sr} dH_0 v_c^2/2;$ $H_0 -$ глубина акватории, м; $v_c -$ скорость течения, м/с; $\bar{u}_c -$ значение параметра u (см. $\underline{3.1.4.5}$) в сечении $H_1/2$.

3.1.5.2 При совместном действии волнения и течения допустима аппроксимация

$$Q_{\Sigma} = Q_{sr} + 2\sqrt{Q_{sr}Q_c} + Q_c, \tag{3.1.5.2}$$

составляющая волновой нагрузки, определяемая следующим где

$$Q_{sr} = a_v (\ln n)^{1/K},$$

 a_v и K параметры масштаба и формы распределения Вейбулла, определяемые по графикам рис. 3.1.4.9.

3.1.6 Сейсмические нагрузки.

3.1.6.1 В ряде районов сейсмические нагрузки на СПБУ могут быть соизмеримы с волновыми.

Интегральное сейсмическое воздействие на СПБУ определяется по формуле

$$Q = M_{po}\beta_{\Sigma}a_{max},\tag{3.1.6.1}$$

 M_{po} - a_{max} - β_{Σ} где приведенная масса понтона;

максимальное значение амплитуды ускорений;

обобщенный коэффициент динамичности по рис. 3.1.6.1.

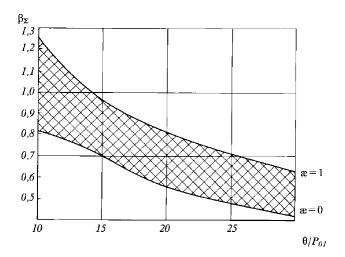


Рис. 3.1.6.1 Обообщенный коэффициент динамичности: θ — несущая частота аксилограммы; P_{01} — низшая частота горизонтальных колебаний

Предельная нагрузка Q_{ult}^{Σ} которую может выдержать СПБУ, определяемая 3.1.6.2 по формуле

$$Q_{ult}^{\Sigma} = nQ_{ult}^{modulus} \left(1 + \frac{l}{d} \cdot \frac{2 - \omega}{2} \right), \tag{3.1.6.2}$$

где число опорных колонн; n - $Q_{ult}^{modulus}$ -

предельная нагрузка на модуль опорной колонны, определяется на основе рассмотрения кинематического состояния модуля. Для типовой решетки СПБУ с К-образными узлами;

 $Q_{ult}^{modulus} = 2,32R_d\pi D_p t_p,$

где R_d — расчетный предел текучести материала диагональных раскосов, МПа;

 D_p и t_p — соответственно диаметр и толщина диагональных раскосов, м;

l - длина опорной колонны;

d — расстояние между верхним и нижним упорами, м;

ж – коэффициент опорной пары (см. <u>3.1.2.2</u>).

3.1.6.3 Коэффициент запаса при сейсмических нагрузках: для землетрясений 1 раз в 100 лет —

$$K_a = Q_{ult}^{\Sigma}/Q \ge 1,25;$$
 (3.1.6.3-1)

для землетрясений 1 раз в 500 лет —

$$K_a = Q_{ult}^{\Sigma}/Q \ge 1.$$
 (3.1.6.3-2)

3.1.7 Задавливание и выдергивание опорных колонн.

3.1.7.1 В процессе задавливания опорных колонн и выдергивания из грунта в конструкции СПБУ могут возникнуть значительные усилия. В связи с этим должен быть выполнен расчет прочности опорных колонн и понтона.

Задачами расчета являются:

определение из условий прочности колонн допустимых уровней контролируемых параметров (углов крена и дифферента);

проверка прочности конструкций понтона при опирании его на диагонально расположенные опоры в случае четырехопорной СПБУ или при расчете на собственный вес с учетом принятого балласта в отсеки понтона в случае трехопорной СПБУ.

3.1.7.2 Допустимые значения углов крена и дифферента определяются из условия, что в процессе выдергивания колонны в наиболее напряженных точках конструкции действующие напряжения не должны превосходить допускаемые значения.

При составлении условий прочности должны рассматриваться наиболее опасные положения точек приложения реакций понтона по высоте модуля опорной колонны и наиболее напряженные районы конструкции. К ним относятся опорные сечения горизонтальных стоек и раскосов, середина пролета вертикальной стойки опорной колонны.

3.1.7.3 Усилия взаимодействия колонны и понтона должны определяться из условий совместности перемещений понтона и опорных колонн и выражаться через углы крена и дифферента, а также через вертикальное осевое усилие.

При определении неизвестных усилий должны учитываться силы тяжести и координаты точки приложения равнодействующей сил тяжести, силы плавучести и форма корпуса в подводной части, силы и моменты, возникающие в опорной части колонны в результате взаимодействия с грунтом.

- **3.1.7.4** Исходя из условий прочности определяется область допустимых значений углов крена и дифферента и осевого усилия. Эти характеристики должны рассматриваться как исходные данные для разработки инструкции по эксплуатации.
- **3.1.7.5** Допустимые значения углов крена и дифферента при заданной величине осевого усилия должны определяться по способу, изложенному в <u>3.1.8.3</u>, полагая силы плавучести равными нулю, а знак усилия обратным знаку сил при выдергивании.

3.1.8 Напряженное состояние опорных колонн.

3.1.8.1 Задачей расчета прочности опорных колонн является определение напряженного состояния конструкции в районе закрепления их в корпусе СПБУ и в районе закрепления их в грунте.

Конструкция колонны должна идеализироваться в виде пространственной рамной системы.

Расчет напряженного состояния конструкций опорных колонн следует проводить с помощью методов, дающих возможность учесть особенности напряженного состояния в элементах колонн, например, с помощью метода конечных элементов. Конструкции понтона и портала допустимо при этом принимать абсолютно жесткими.

- **3.1.8.2** Районом закрепления опорной колонны в корпусе следует считать ее часть, ограниченную снизу поперечным сечением, находящимся ниже нижнего упора на расстоянии 0,5 пролета между верхним и нижним упорами, а сверху поперечным сечением, отстоящим на 0,25d вверх от верхней точки соприкосновения с верхним упором, или концевым сечением опорной колонны (см. рис. 3.1,2.1).
- **3.1.8.3** В качестве силовых граничных условий в нижнем сечении рассматриваемого района опорной колонны должны приниматься значения интегральных сил и моментов, определенных на основании упрощенной модели СПБУ (см. 3.1.2.1).

При задании ограничения на вертикальные перемещения в нижнем сечении отрезка колонны в число силовых граничных условий следует включать вертикальные усилия, передаваемые механизмом подъема на колонну. Величина и схема приложения этих усилий зависит от конструкции конкретного механизма подъема, способа крепления его к корпусу СПБУ и возможной задаваемой неравномерности распределения этих усилий, связанной с обеспечением условия прочности зуба.

3.1.8.4 В результате расчета идеализированной конструкции опорной колонны, закрепленной в корпусе понтона, определяются значения перемещений и внутренних усилий в узлах стержневой системы, а также величины реакций и распределение напряжений в элементах конструкции.

Расчет напряжений для элементов наиболее напряженных модулей должен быть выполнен в трех поперечных сечениях по их высоте: в середине пролета и в опорных сечениях.

3.1.8.5 Районом закрепления опорной колонны в грунте следует считать отрезок ее, ограниченный сверху поперечным сечением, находящимся на расстоянии 0,5d от линии сопряжения колонны с опорным башмаком.

Для моделирования башмака колонны или другой подобной конструкции, являющейся частью нижнего конца опорной колонны, следует использовать идеализацию, позволяющую получить плоское напряженное состояние в элементах этой конструкции. Силовые граничные условия задаются на верхнем конце рассматриваемого отрезка опорной колонны, аналогично 3.1.2.1. В результате расчета должны быть получены значения внутренних усилий и перемещений, а также распределение напряжений.

3.1.8.6 В случае невозможности выполнения положений <u>3.1.8.2 — 3.1.8.5</u> в силу принципиальных отличий от изложенной расчетной схемы допускается представлять в Регистр для согласования расчетную схему СПБУ, конкретно учитывающую конструктивные особенности установки.

3.1.9 Нагрузки на колонны СПБУ при транспортировке.

В условиях транспортировки опорные колонны подняты вверх, чаще всего полностью. Комбинация инерционных нагрузок при бортовой и килевой каяке совместно с ветровым воздействием вызывает большие изгибающие моменты и осевые силы в колоннах, а также большие реактивные усилия в портале и конструкциях корпуса.

Параметры качки могут быть получены либо по результатам модельных испытаний либо расчетом. К результатам расчетов параметров качки следует относиться с большой осторожностью из-за наличия ряда нетрадиционных особенностей понтонов СПБУ, обусловливающих появление ряда нелинейностей.

При расчете нагрузок в условиях перехода должны быть учтены:

инерционные силы, соответствующие спецификационной амплитуде бортовой или килевой качки с собственным периодом платформы;

статические силы, соответствующие максимальному наклонению колонн во время бортовой или килевой качки;

ветровые силы, отвечающие спецификации. Эффект вертикальной качки, сноса и рыскания допустимо учитывать введением поправочного коэффициента $\gamma = 1,2$.

Допускается, что бортовую или килевую качку можно описать с помощью зависимости

$$\theta = \theta_0 \sin \frac{2\pi t}{T_0},\tag{3.1.9-1}$$

где t – время, о

 T_0 — собственный период бортовой или килевой каяки;

 θ_0 — амплитуда бортовой или килевой каяки, град.

Принимается, что центр колебаний расположен в плоскости ватерлинии.

Ускорение сосредоточенной массы, расположенной на расстоянии r, м, от центра колебаний, в м/с² определяется как

$$a = -(2\pi/T_0)^2 \theta_0 r \sin\frac{2\pi t}{T_0}. (3.1.9-2)$$

Амплитудные значения усилий на единицу длины опорной колонны определяются координатой z:

поперечные усилия —

$$F_{TS} = m(z)g\sin\theta_0$$
 — статическое усилие;

$$F_{TD} = m(z)\varepsilon_0 d$$
 — инерционное усилие; (3.1.9-3)

$$F_W = \frac{1}{2} \rho_W C_D [W(z) \cos \theta_0]^2$$
 — ветровое усилие;

продольные силы —

$$F_{LS} = m(z)g\cos\theta_0$$
— статическое усилие;

$$F_{LD} = m(z)\varepsilon_0 d$$
 — инерционное усилие, (3.1.9-4)

rде m(z) - единичная масса;

W(z) — скорость ветра на уровне z; g — ускорение силы тяжести;

 $\varepsilon_0 = 2\pi/T_0$.

При приведении усилий к равнодействующим величинам следует учитывать собственный момент инерции рассматриваемой конструкции, например, при сведении

участка колонны длиной l и погонной равномерной массой m собственный момент инерции M_i равен

$$M_j=\frac{ml^3}{12}.$$

Собственный период качки (бортовой или килевой) допустимо определять по формуле

$$T_0 = 2p\sqrt{(r_0^2 - a_0^2)/gGM},$$
 (3.1.9-5)

где

радиус инерции для бортовой или килевой качки по отношению к оси, расположенной в плоскости ватерлинии, м;

расстояние по вертикали между водной поверхностью и истинной осью вращения при бортовой и килевой качке, м,

поперечная или продольная метацентрическая высота, м.

Расстояние a_0 в первом приближении может быть взято между поверхностью воды и центром тяжести.

Радиус инерции r_0 может быть определен как

$$r_0 = \sqrt{I_m/M_m}, (3.1.9-6)$$

где

 $I_{m} = I_{L} + I_{H} + I_{A}$ – момент инерции масс по отношению к бортовой и килевой каяке;

$$M_m = nM_L + M_H - \text{macca};$$

число колонн;

момент инерции масс колонн,
момент инерции массы корпуса;
присоединенная масса момента инерции;
масса одной колонны;
масса корпуса.

3.1.10 Удар колонны о грунт при установке СПБУ на точку.

При установке и снятии с грунта опорная колонна может быть подвержена удару о грунт, вызванному качкой при установке на волнении.

Сила удара, вызванная качкой, может быть рассчитана с помощью упрощенного метода, основного на следующих допущениях:

грунта касается только одна колонна;

нижний конец колонны немедленно останавливается при касании колонной грунта; грунт бесконечно жесткий.

Энергия вращения установки поглощается конструкцией колонны, что дает силу удара P:

$$P = \frac{2\pi\theta_0}{T_0} \sqrt{KI_m} , \qquad (3.1.10-1)$$

где

момент инерции массы установки по отношению к бортовой или килевой каяке;

 I_m — момент инерции м θ_0 — амплитуда каяки; K — общая поперечна общая поперечная жесткость колонн.

Результат будет зависеть от интенсивности волновых условий и глубины акватории.

Максимально допустимая величина ударного воздействия может быть определена исходя из критерия прочности. Максимально допустимая амплитуда бортовой и килевой качки во время постановки и снятия с грунта:

$$[\theta_0] = T P_{max} / 2\pi \sqrt{K I_m}. \tag{3.1.10-2}$$

3.1.11 Прочность опорных колонн СПБУ при ледовых воздействиях.

Как правило, СПБУ не предназначены для работы во льдах. Тем не менее, возникающая необходимость продления срока эксплуатации СПБУ при наличии льда приводит к проблеме обеспечения безопасности при увеличении времени на бурение.

Для решения поставленной задачи должна быть определена сила взаимодействия ледяного поля массой m_i , движущегося со скоростью v_i , с конструкциями СПБУ. При этом должна быть учтена податливость опор сооружения.

Нагрузки от движущихся ледяных полей должны приниматься наименьшей из двух нагрузок: при остановке ледяного поля и прорезании ледяного поля.

3.1.12 Вихревые нагрузки.

Вихревые нагрузки определяются для «прозрачных» конструкций применительно к критическим скоростям ветра, определяемым по формуле:

в направлении, перпендикулярном ветровому потоку:

$$(w_{cr})_y = \frac{d}{(T)_y Sh},$$
 (3.1.12-1)

где $(T)_{y}$ – период собственных колебаний рассматриваемой конструкции;

Sh – число Струхаля;

поперечный размер конструкции;

в направлении вдоль ветрового потока:

$$(w_{cr})_x = \frac{d}{(T)_x Sh}. (3.1.12-2)$$

Значение числа Струхаля определяется формой поперечного сечения конструкции, углом набегающего потока и безразмерным числом Рейнольдса:

$$Re = \frac{d\overline{w}_{10}}{v}$$
,

где v – коэффициент кинематической вязкости воздуха.

Зависимость $Sh = Sh(\alpha)$ для конкретного объекта нетрадиционной формы надежнее всего определять экспериментально на модели. При отсутствии экспериментальных данных рекомендуется прибегнуть к экспертным оценкам. В первом приближении можно использовать следующую формулу:

$$C_x Sh = 0.26(1 - e^{-2.38C_x}),$$
 (3.1.12-3)

 C_x – коэффициент лобового сопротивления рассматриваемой конструкции.

3.2 ПОЛУПОГРУЖНЫЕ ПБУ

3.2.1 Общие требования.

3.2.1.1 Прочность конструкции ППБУ в соответствии с положениями <u>2.4</u> должна проверяться для трех различных режимов:

выживания;

рабочего;

транспортировки

в соответствии с критериями 2.4.

Общие указания о назначении нагрузок в каждом из этих режимов приведены в 2.3.

3.2.1.2 ППБУ в режиме выживания должна иметь клиренс h_c , м, определяемый как

$$h_c \ge 0.6h_{50} + 0.5,$$
 (3.2.1.2)

где h_{50} – экстремальная высота, м, волны (1 раз в 50 лет) для данных районов эксплуатации.

- **3.2.1.3** Для оценки по критерию усталостной прочности должен использоваться весь спектр долговременного распределения $P(h_3, T_c)$ данного или наиболее тяжелого по волновым условиям района и весь период эксплуатации ППБУ.
- **3.2.1.4** Волновая нагрузка представляет собой систему взаимно уравновешенных поверхностных гидродинамических нагрузок и объемных инерционных нагрузок собственных масс установки, возникающих при качке ППБУ на волнении.

Для определения нагрузок может использоваться линейная теория качки на волнении.

- **3.2.1.5** При расчете прочности корпуса ППБУ следует руководствоваться положениями <u>2.5</u>, а также нижеприведенными указаниями.
- **3.2.1.6** Повреждение любой из основных связей корпуса или раскоса не должно приводить к разрушению корпуса ППБУ. Регистром могут быть потребованы расчеты, подтверждающие, что в условиях воздействия внешних нагрузок, соответствующих наибольшим в течение одного года для данного района эксплуатации, прочность корпуса с поврежденным основным элементом или раскосом будет обеспечена.
- **3.2.1.7** Непроницаемые погружные или полупогружные элементы конструкции корпуса (отсеки) должны быть оборудованы средствами обнаружения нарушения непроницаемости.

3.2.2 Общие нагрузки.

- **3.2.2.1** Общие нагрузки на корпус установки в условиях волнения могут быть определены одобренным Регистром расчетным методом, учитывающим качку ППБУ и случайный характер волнения, или экспериментальным методом, основанным на специальных модельных испытаниях, обеспечивающих надежность и адекватность результатов натурным данным.
- **3.2.2.2** Общие волновые нагрузки могут быть представлены в виде распределенных нагрузок и в виде расчетных значений интегральных характеристик составляющих нагрузки с указанием способов определения соответствующих им распределенных нагрузок и расчетных композиций нагрузок для каждого расчетного режима эксплуатации для определения суммарных напряжений.

Распределенные нагрузки, определяемые обычно применительно к идеализации корпуса ППБУ, используемой в расчетах качки, для расчета напряженно-деформированного состояния конструкций корпуса следует преобразовать с учетом принятой идеализации и применяемой реализации метода конечных элементов.

3.2.2.3 В качестве интегральных характеристик, в общем случае, следует рассматривать четыре составляющие волновой нагрузки: Q_1 — симметричную, Q_2 —

кососимметричную, Q_3 — крутящий в диаметральной плоскости ППБУ момент и Q_4 — перерезывающую силу на четверти длины установки в долговременном распределении режимов волнения или их дисперсии на стационарном режиме. 1

3.2.2.3.1 Интегральная характеристика симметричной горизонтальной составляющей нагрузки:

$$Q_1^l = \frac{1}{2} \int_L \left(q_y^l - q_y^r \right) dx = -Q_1^r.$$
 (3.2.2.3.1-1)

Соответствующая горизонтальная распределенная нагрузка, т/м:

$$q_1^l = Q_1^l/L$$
, $\mu q_1^r = Q_1^r/L = -Q_1^l/L$ (3.2.2.3.1-2)

приложена в плоскости ватерлинии в транспортном режиме и в плоскости палубы понтонов в режимах рабочем и выживания.

3.2.2.3.2 Интегральная характеристика несимметричной составляющей:

$$Q_2^l = \frac{1}{2} \int_L (q_z^l - q_z^r) dx = -Q_2^r.$$
 (3.2.2.3.2-1)

Соответствующая распределенная нагрузка представлена в каждом сечении понтона распределенными вертикальной силой q, т/м, и моментом M, т:

$$q_2^l = Q_2^l / L$$
, $M_2^l = (Q_2^l / L)(b_0 + B_1)$ (3.2.2.3.2-2)

И

$$q_2^r = -Q_2^l/L$$
, $M_2^r = M_2^l$, (3.2.2.3.2-3)

приложенными q_2 — в диаметральной плоскости понтонов, M_2 — действуют относительно линии пересечения диаметральной плоскости понтонов и ватерлинии в транспортном режиме и диаметральной плоскости и плоскости палубы понтонов в режимах рабочем и выживания.

3.2.2.3.3 Интегральная характеристика крутящей (в диаметральной плоскости ППБУ) составляющей:

$$Q_3^l = \frac{1}{2} \int_L x(q_z^l - q_z^r) dx = -Q_3^r.$$
 (3.2.2.3.3-1)

Соответствующие вертикальные распределенные силы, т/м:

$$q_3^l = \frac{12Q_3^l}{L^3} x$$
 и $q_3^r = \frac{12Q_3^r}{L^3} x$ (3.2.2.3.3-2)

приложены в диаметральной плоскости понтонов.

3.2.2.3.4 Интегральная характеристика симметричной вертикальной составляющей:

$$Q_4^l = \frac{1}{2} \int_{L/A} (q_z^l - q_z^r) dx = Q_4^r.$$
 (3.2.2.3.4-1)

¹ Данные составляющие справедливы для ППБУ классического типа, которая состоит из двух понтонов, 4 — 8 стабилизирующих колонн, верхнего корпуса и, как правило, раскосов.

Соответствующие вертикальные распределенные силы, т/м:

$$q_4^l = q_4^r = (2\pi Q_4^l/L)\cos(2\pi x/L)$$
(3.2.2.3.4-2)

приложены в диаметральной плоскости понтонов.

В зависимостях, приведенных в 3.2.2.3.1 — 3.2.2.3.4, обозначены:

 $q_z^l,\,q_y^l,\,M^l$ и $q_z^r,\,q_y^r,\,M^r$ — распределенные вертикальная и горизонтальная составляющие силы и момент для левого и правого понтонов соответственно, каждая из которых представляет собой сумму возмущающих, восстанавливающих, гидродинамических и инерционных собственных масс сил и моментов, а

соответственно длина и ширина корпуса понтона;

их главные вектор и момент равны нулю;

 b_0 — расстояние между внутренними бортами понтонов.

3.2.2.4 Напряжения, определенные по расчетным величинам интегральных характеристик составляющих нагрузки, имеют обеспеченность этих характеристик. Для определения расчетных суммарных напряжений следует использовать композиции составляющих нагрузки, приведенные в табл. 3.2.2.4.

Таблица 3.2.2.4

Режим эксплуатации ППБУ	Расчетное волнение	Положение ППБУ на волнении	Расчетная композиция нагрузок
Транспортировки	$h_{3\%} = h_{per}^{-1}$	на прямом курсе ($\varphi = 0$ или 180°)	Q_4 ; 0,3 Q_1 ; 0,3 Q_2 и 0,3 Q_3
Транспортировки		на косом курсе	Q_3 ; 0,3 Q_1 ; 0,3 Q_2 и 0,3 Q_4
	t t	лагом к волне	$Q_1;\;Q_2;\;0,3Q_2$ и $0,3Q_4$
	$h_{\min}^3 \le h_{3\%} \le h_{per}$	на прямом курсе ($\varphi = 0$ или 180°)	Q_4 ; 0,3 Q_1 ; 0,3 Q_2 и 0,3 Q_3
	$T_{\rm c}$ в соответствии	на косом курсе	Q_3 ; 0,3 Q_1 ; 0,3 Q_2 и 0,3 Q_4
Рабочий и	с долговременным	лагом к волне	$Q_1;\;Q_2;\;0,3Q_2$ и $0,3Q_4$
выживания	распределением		
BBINNIBATIVI	при заданном		
	для режима		
	диапазоне $h_{3\%}$		

 $^{^{1}}$ $h_{\mathrm per}$ — допустимая высота волны 3%-ной обеспеченности для данного режима эксплуатации.

Для напряжений, определяемых по распределенным нагрузкам, следует рассчитать их долговременное распределение или дисперсии напряжений на стационарном режиме волнения, позволяющие определить величины напряжений такой же обеспеченности, которая регламентируется в <u>2.3</u> для волновых условий в расчетных режимах эксплуатации ППБУ.

3.2.2.6 Гидродинамические нагрузки на раскосы определяются в соответствии с <u>2.3.9</u>.

Расчетные значения коэффициента присоединенных масс C_m определяются по методике, одобренной Регистром. Расчетные значения коэффициента сопротивления C_{sr} должны быть не менее указанных на рис. 3.1.4.1.

 $[\]left|^2 \right|^2 T_{
m c}$ — средняя величина среднего периода стационарных режимов волнения с $h_{3\%}=h_{
m per}.$

 $^{^3}$ h_{\min} — наименьшая высота волны 3%-ной обеспеченности для режима выживания (для рабочего режима = 0).

3.2.2.7 Допускается не учитывать в расчетах скоростную составляющую нагрузки, если:

$$h_{3\%} \le \pi DC_{in}/C_{sr},$$
 (3.2.2.7)

где $h_{3\%}$ – высота волны 3%-ной обеспеченности;

 $C_{in}=1+C_m$.

- **3.2.2.8** При использовании ППБУ на акваториях, покрытых льдом, следует рассматривать их взаимодействие с различными ледовыми образованиями, характерными для данного периода времени в данном море. Для расчета составляющих глобальных ледовых нагрузок должны использоваться методы, указанные в 3.1.2 части II «Корпус» Правил МСП применительно к стационарным платформам.
 - 3.2.3 Местные нагрузки.
- **3.2.3.1** Местные нагрузки определяют интенсивность поперечной нагрузки на наружную обшивку, ребра жесткости, перекрытия понтонов, стабилизирующих колонн и верхнего корпуса.
- **3.2.3.2** Суммарная местная нагрузка включает постоянную и переменную составляющие.
- **3.2.3.3** Постоянная нагрузка определяется разностью наружного (по отношению к отсеку) и внутреннего давлений.

Расчетной величиной является самое неблагоприятное значение этой разницы. Если внутреннее давление создается расходуемым грузом или балластом, при определении расчетной местной нагрузки оно должно приниматься равным нулю.

3.2.3.4 Переменные местные давления, кПа, определяются по следующим формулам: на погруженную часть конструкции —

$$p = gp \frac{h_{3\%}}{2} ce^{-kz}; (3.2.3.4-1)$$

на надводную часть конструкции —

$$p = gp\left(\frac{h_{3\%}}{2}c - z_1\right)$$
, но не менее 5 кПа, (3.2.3.4-2)

где

 $h_{3\%}$ — высота волны 3%-ной обеспеченности волнового режима, имеющего в долговременном распределении для данного района эксплуатации обеспеченность $P\left(h_{3\%},T_c\right)\approx 10^{-2}$, м;

c — коэффициент, учитывающий дифракцию волн и неравномерность поля давлений по контуру погруженного элемента, c = 1,5;

 $k = 4\pi^2/gT_c^2$;

 T_c – средний период режима волнения обеспеченностью 10^{-2} , с;

z – заглубление точки под свободной поверхностью воды погруженной части конструкции, м;

 z_1 – возвышение точки над свободной поверхностью воды надводной части конструкции, м;

g – ускорение свободного падения, м/с²;

p – плотность морской воды, т/м³.

- 3.2.3.5 Ударные нагрузки на раскос.
- **3.2.3.5.1** Расчетная скорость v_0 относительного движения носового поперечного горизонтального раскоса при условии входа раскоса в воду (амплитуда R_0 относительного перемещения $R>2b_1$, где b_1 отстояние нижней кромки раскоса от поверхности воды) определяется выражением

$$v_0^2 = 2D_v(4\ln 10 - 2b_1^2/D_R), \tag{3.2.3.5.1}$$

где D_{v} и D_{R} — дисперсии скорости и перемещений относительного движения раскоса.

Дисперсии D_{v} и D_{R} должны определяться с учетом волнового движения воды и вертикальной и килевой качки ППБУ на встречном курсовом угле относительно волнения в режимах транспортировки и выживания (2.3.2.2 и 2.3.4.4) с помощью методов, согласованных Регистром.

3.2.3.5.2 Расчетная распределенная ударная нагрузка, т/м, определяется как

$$q_{ym} = 1,47 v_0^2
ho D$$
, (3.2.3.5.2) где D – диаметр раскоса, м.

3.2.3.5.3 Наибольшая расчетная амплитуда перемещения z_0 среднего сечения раскоса в процессе упругих колебаний и соответствующие напряжения σ_y определяются по формулам:

$$z_0 = \frac{F_{red}}{K_{red}} \frac{2,72a_1}{\left(1+a_1^2\right)^2} \left\{ \left[2a_1 + \left(1+a_1^2\right)\omega_1 t\right] \left(\frac{1}{2,72}\right) - 2a_1\cos\omega_1 t - \left(1-a_1^2\right)\sin\omega_1 t \right\}; (3.2.3.5.3-1) \right\}$$

$$\sigma_{y} = (ED/2)z_{0}f_{1}^{"}(y),$$
 (3.2.3.5.3-2)

где
$$a_1 = v_0/0,145 D \omega_1;$$

$$\omega_1 = K_{red}/M_{red} \qquad \qquad \text{частота первого тона упругих колебаний раскоса;}$$

$$F_{red} = \int_0^l q_{ym} f_1 dy + F_{l/2} f_1 \qquad \qquad \text{приведенная сила;}$$

$$K_{red} = \int_0^l EJ \left(f_1^*\right)^2 dy + K_{l/2} f_1 \qquad \qquad \text{приведенная жесткость;}$$

$$M_{red} = \int_0^l m f_1^2 dy + m_{l/2} f_1^2 \qquad \qquad \text{приведенная масса;}$$

$$f_1 \qquad \qquad \text{форма колебаний первого тона; вычисляется по формуле:}$$

$$f_1 = 0.5 \left(\cos\frac{2\pi y}{l} - 1\right) + \left(1 - \sin\frac{\pi y}{l}\right),$$
 (3.2.3.5.3-3)

либо форма изгиба балки определяется с учетом жесткости заделки \mathfrak{B} , опоры в пролете с жесткостью $K_{l/2}$ и других особенностей балки под воздействием равномерно распределенной нагрузки, приводящей к единичному прогибу в точке ее приведения.

- **3.2.3.5.4** Напряжения σ_y следует учитывать при определении суммарных напряжений в раскосе, вызванных местными и общими нагрузками в режимах транспортировки и выживания.
- **3.2.3.6** При использовании ППБУ на акваториях, покрытых льдом, следует рассматривать локальные ледовые нагрузки, определяемые так же, как и для стационарных сооружений (см. 3.1.2.3.23 и 3.1.2.3.24 части ІІ «Корпус» Правил МСП).

3.2.3.7 Динамические аспекты воздействия торосистых льдов на ПБУ должны быть дополнительно изучены при значениях безразмерного параметра $1/3 < \chi < 3$, определяющего относительную близость частоты ледовых воздействий к собственной частоте податливого сооружения:

$$\chi = \frac{0.4TV}{w_{\text{rop}} + X_{st}},\tag{3.2.3.7}$$

где T – собственный период горизонтальных колебаний ПБУ в положении статического равновесия;

 $w_{\text{тор}}$ – ширина тороса;

 X_{st} — смещение сооружения под действием максимальной нагрузки, соответствующей

действию тороса на неподвижное сооружение;

V – скорость дрейфа льдов.

- 3.2.3.8 Ввиду существенной зависимости динамических эффектов от параметров ледовых образований, геометрических особенностей ПБУ, характеристик системы ее удержания и скорости движения льдов оценку динамических аспектов ледовых воздействий на ПБУ целесообразно выполнять на основании математического моделирования взаимодействия ледовых образований с заякоренным сооружением с использованием компьютерных программ, одобренных Регистром.
 - 3.2.4 Определение напряженно-деформированного состояния.
- **3.2.4.1** Конструкция платформы считается линейной системой. Поэтому напряжения в конструкции могут быть получены в результате наложения результатов воздействия отдельных составляющих нагрузок.
- **3.2.4.2** Для расчета напряженно-деформированного состояния конструкции ППБУ в целом рекомендуется использовать метод конечных элементов. При этом могут быть применены следующие трехмерные модели: стержневая, пластинчатая или пластинчато-стержневая.

Стержневую модель целесообразно использовать на ранних стадиях проектирования. Она является также удобной при наличии большого числа произвольно расположенных раскосов.

Пластинчатую и пластинчато-стержневую модели целесообразно использовать на завершающих стадиях проектирования. Последняя подразумевает идеализацию в виде стержневых конечных элементов либо только раскосов, либо раскосов, стабилизирующих колонн и понтонов.

- **3.2.4.3** При расчете напряженно-деформированного состояния конструкции ППБУ в целом на базе стержневой модели должно быть выполнено следующее:
- .1 должны использоваться стержневые конечные элементы с шестью степенями свободы в узле, учитывающие деформации изгиба и сдвига в двух плоскостях, растяжения-сжатия и кручения;
- .2 геометрические характеристики поперечных сечений элементов, аппроксимирующих понтоны, стабилизирующие колонны и раскосы, должны определяться из условия, что продольные связи, включающие обшивку, продольные ребра жесткости и другие продольные элементы, участвуют в работе конструкции полной площадью;
- **.3** геометрические характеристики поперечных сечений элементов, аппроксимирующих конструкцию верхнего корпуса, должны определяться в соответствии с положениями 3.2.4.4;
- .4 в местах соединения элементов с большими размерами поперечных сечений (например, соединение стабилизирующей колонны с понтоном или раскосом (рис. 3.2.4.3.4) и т.п. должны вводиться «абсолютно жесткие» конечные элементы, либо следует использовать стержневые конечные элементы с жесткими окончаниями.

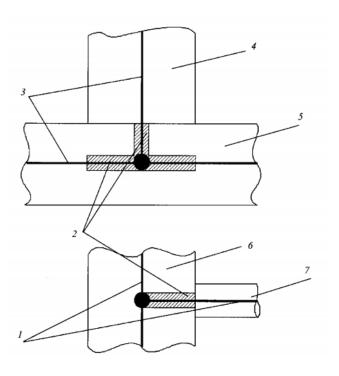


Рис. 3.2.4.3.4

«Абсолютно жесткие» конечные элементы:

- 1,3— стержневые конечные элементы; 2— «абсолютно жесткие» конечные элементы; 4, 6— стабилизирующая колонна; 5— понтон; 7— раскос
- **3.2.4.4** Положения по определению геометрических характеристик поперечных сечений элементов, аппроксимирующих конструкцию верхнего корпуса, предусматривают следующее.
- **3.2.4.4.1** Конструкция верхнего корпуса (<u>рис. 3.2.4.4.1-1</u>) может быть представлена в виде системы стержневых элементов (<u>рис. 3.2.4.4.1-2</u>), которые обладают свойствами реальной конструкции. Геометрическими характеристиками поперечных сечений стержневых элементов являются:
- J_x момент инерции площади поперечного сечения элемента относительно горизонтальной оси;
- J_z момент инерции площади поперечного сечения элемента относительно вертикальной оси;
 - J_T момент инерции площади поперечного сечения элемента на кручение;
- $F_{\!\scriptscriptstyle \chi}$ площадь поперечного сечения элемента, воспринимающая сдвиг в горизонтальном направлении;
- $F_{\!\scriptscriptstyle Z}$ площадь поперечного сечения элемента, воспринимающая сдвиг в вертикальном направлении;
 - F_{t-com} площадь поперечного сечения элемента на растяжение-сжатие.

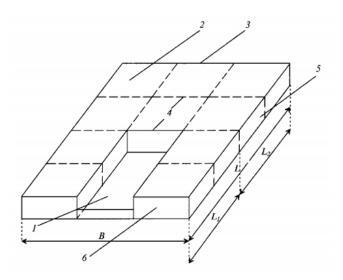


Рис. 3.2.4.4.1-1 Схема конструкции верхнего корпуса (пример): корпуса; L — длина верхнего корпуса; L_1, L_2 — расстояние ме

B — ширина верхнего корпуса; L — длина верхнего корпуса; L_1, L_2 — расстояние между осями стабилизирующих колонн по длине; 1,2 — палуба; 3,6 — транец; 4 — переборки; 5 — борт

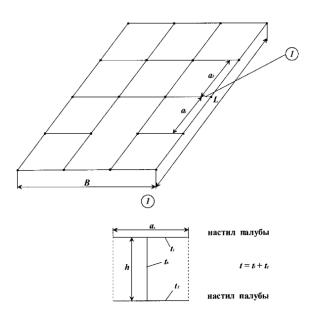


Рис. 3.2.4.4.1-2

Стержневая модель верхнего корпуса (пример):

1 — рассматриваемый стержневой элемент и его поперечное сечение; a_x — ширина присоединенного пояска; a_1 и a_2 — отстояние элемента от ближайших элементов того же направления; B — ширина верхнего корпуса; L — длина верхнего корпуса

3.2.4.4.2 Момент инерции J_x определяется высотой стенки и шириной присоединенного пояска a_x , которая зависит от длины пролета элемента b и формы деформации конструкции. Должны рассматриваться все продольные связи, прилегающие к элементу.

Длина пролета b для поперечных элементов принимается равной ширине верхнего корпуса, если отсутствуют промежуточные опоры в виде раскосов, либо равной половине ширины верхнего корпуса, если имеют место промежуточные опоры в виде раскосов. Длина пролета b, м, для продольных элементов принимается равной расстоянию между осями стабилизирующих колонн по длине.

Различаются следующие формы деформации конструкции: симметричный изгиб и кососимметричный изгиб. При симметричном изгибе ширина присоединенного пояска элементов принимается равной меньшей из величин, определяемых по формулам:

$$a_x = \frac{1}{3}b;$$
 (3.2.4.4.2-1)

$$a_x = 0.5(a_1 + a_2).$$
 (3.2.4.4.2-2)

При кососимметричном изгибе ширина присоединенного пояска элементов принимается равной меньшей из величин, определяемых по формулам:

$$a_{\chi} = \frac{1}{6}b;$$
 (3.2.4.4.2-3)

$$a_r = 0.5(a_1 + a_2),$$
 (3.2.4.4.2-4)

где a_1 , a_2 — отстояния рассматриваемого элемента от ближайших элементов того же направления, м, расположенных по обе стороны от рассматриваемого.

3.2.4.4.3 Момент инерции J_z , м⁴, определяется по формуле

$$J_z = (ta_z^3/12)(1/n_z),$$
 (3.2.4.4.3-1)

где

t - суммарная расчетная толщина настилов палуб, м;

 $a_{\rm z}$ — ширина присоединенного пояска при изгибе относительно вертикальной оси, м;

 $n_{
m z}$ — количество поперечных элементов на длине верхнего корпуса при вычислении J_z для поперечных элементов либо количество продольных элементов на ширине верхнего корпуса при вычислении J_z для продольных элементов.

Ширину присоединенного пояска a_{z} следует определять по формуле

$$a_{\rm z} = B \sqrt[3]{(L/2B)\frac{1}{1+\nu}},$$
 (3.2.4.4.3-2)

где

 В – ширина верхнего корпуса для поперечных элементов или длина верхнего корпуса для продольных элементов, м;

длина верхнего корпуса для поперечных элементов или ширина верхнего корпуса для продольных элементов, м;

v – коэффициент Пуассона.

3.2.4.4.4 При вычислении момента инерции J_T верхний корпус следует рассматривать в каждом продольном или поперечном сечении как замкнутую систему (системы), ограниченную по контуру настилами палуб и обшивкой бортов (транцев, переборок).

Момент инерции J_T , м⁴, определяется по формуле

$$J_T = (4S^2 / \int dl/t_c)(1/n_T), \tag{3.2.4.4.4}$$

где

S

 площадь замкнутого контура, образуемого настилами палуб и обшивкой бортов (транцев, переборок), рассматриваемой замкнутой системы, м²;

dl и t_c — элемент длины периметра контура и толщина стенки его в рассматриваемой точке периметра, м;

 n_T — количество поперечных элементов, входящих в замкнутую систему при вычислении J_T для поперечных элементов, либо количество продольных элементов, входящих в замкнутую систему при вычислении J_T для продольных элементов.

Скачки изгибающих моментов в местах пересечения продольного и поперечного набора верхнего корпуса, обусловленные приведенным выше способом задания J_T , должны быть сглажены посредством осреднения значений изгибающих моментов.

3.2.4.4.5 Площадь поперечного сечения F_x , если не доказано того, что сдвигом можно пренебречь $(F_x \to \infty)$, определяется по формуле

$$F_x = 0.5(a_1 + a_2)t,$$
 (3.2.4.4.5) где $a_1, a_2 - \text{см. } \frac{3.2.4.4.2}{5.2.4.4.3}$.

3.2.4.4.6 Площадь поперечного сечения F_Z , м, если не доказано того, что сдвигом можно пренебречь $(F_Z \to \infty)$, определяется по формуле

$$F_z = h t_h,$$
 (3.2.4.4.6)
где h — высота поперечного сечения элемента, м; t_h — расчетная толщина стенки элемента, м.

3.2.4.4.7 Площадь поперечного сечения F_{t-com} определяется высотой стенки и шириной присоединенного пояска a_{t-com} . Должны рассматриваться все продольные связи, прилегающие к элементу.

Ширина присоединенного пояска определяется по формуле

$$a_{t-com} = 0.5(a_1 + a_2),$$
 (3.2.4.4.7)

3.2.4.5 В соответствии с <u>2.4.3.9</u> может допускаться потеря устойчивости пластин основных и второстепенных конструктивных элементов только для палубных настилов верхнего корпуса. В этом случае расчеты должны выполняться с учетом редуцирования гибких связей (пластин) под действием расчетных сжимающих напряжений.

69

3.3 МОРСКИЕ ПЛАТФОРМЫ С ПОСТОЯННЫМ МЕСТОМ ЭКСПЛУАТАЦИИ

3.3.1 При проектировании ПБУ, эксплуатация которых предполагается только на одной точке в течение всего срока службы там, где это уместно, могут применяться требования 3.1 части II «Корпус» Правил МСП.

70

3.4 ЖЕЛЕЗОБЕТОННЫЕ И СТАЛЕБЕТОННЫЕ КОНСТРУКЦИИ

3.4.1 Если корпус ПБУ полностью или частично выполнен из железобетонных и/или сталебетонных конструкций, то он должен соответствовать требованиям, приведенным в 3.2 части II «Корпус» Правил МСП.

3.5 ПБУ НА НАТЯЖНЫХ СВЯЗЯХ

3.5.1 Общие требования.

3.5.1.1 ПБУНС состоит из следующих трех основных компонентов (групп конструкций):

корпуса;

натяжных связей;

донного фундамента (якоря).

При проектировании указанных компонентов и ПБУНС в целом следует использовать приемлемые требования разд. 1 и 2 с учетом дополнительных указаний и пояснений, содержащихся в настоящей главе.

3.5.1.2 Прочность конструкции ПБУНС в соответствии с требованиями <u>3.5.3</u> должна проверяться для следующих расчетных режимов:

экстремального нагружения;

рабочего;

транспортировки;

установки на точку;

снятия с точки;

замены натяжных связей, если это предусмотрено в процессе эксплуатации.

Режим замены натяжной связи подразумевает, что одна (или более) натяжная связь может сниматься для осмотра, текущего ремонта или замены. Данный режим следует определять, принимая во внимание ожидаемую частоту снятия связи и протяженность времени, в течение которого натяжная связь будет выведена из эксплуатации.

3.5.1.3 ПБУНС должна иметь клиренс h_c , м, не менее большей из величин, определяемых по формулам:

$$h_c = \Delta_{100} + 1.2(D/\lambda_{100})^{1/4}h_{100} + 1.5;$$
 (3.5.1.3-1)

$$h_c = \Delta_{100} + 4h_{raf_{100}} + 0.5,$$
 (3.5.1.3-2)

где Δ_{100} – максимальная амплитуда изменения уровня моря, возможная 1 раз в 100 лет; включая штормовой нагон, м;

 $h_{100},\,\lambda_{100}$ — соответственно высота и длина волны, возможные 1 раз в 100 лет, м;

 $h_{raf_{100}}$ — толщина наслоенного льда, возможная 1 раз в 100 лет, м;

диаметр/габаритный размер опорной части на уровне ватерлинии, м.

3.5.1.4 В дополнение к требованиям <u>1.3</u> техническому наблюдению в процессе изготовления и установки на точку подлежат следующие конструкции ПБУНС:

натяжные связи;

донный фундамент.

Применительно к ним справедливы все требования указанного пункта.

- **3.5.1.5** Если в технических требованиях к проекту оговорено, что натяжные связи подлежат замене в процессе эксплуатации, те. их срок службы меньше срока службы ПБУНС, то надбавки на износ для натяжных связей должны определяться, исходя из их собственного фактического срока службы.
- **3.5.1.6** Требования к материалам стальных конструкций ПБУНС указаны в <u>3.5.5</u>. Требования к материалам железобетонных и композитных конструкций донного фундамента и ледового пояса корпуса ПБУНС должны соответствовать <u>1.5.2</u>.

3.5.1.7 Требования к натяжным связям, содержащиеся в настоящей главе, в основном сформулированы применительно к связям, состоящим из трубчатых стальных элементов. В том случае, если натяжная связь выполнена из троса или цепи, при проектировании следует руководствоваться требованиями части ІІІ «Устройства, оборудование и снабжение» и дополнительно требованиями настоящей части в той степени, насколько они приемлемы.

3.5.2 Нагрузки.

3.5.2.1 При определении нагрузок на ПБУНС и отдельные ее компоненты, таких как ветровые, от течения, ледовые, сейсмические, на палубы, при швартовке судов и др., следует руководствоваться требованиями 2.2, 2.3.6 — 2.3.10, 2.3.12, 2.3.13 и 3.1.2 части II «Корпус» Правил МСП. При формировании комбинаций нагрузок рекомендуется принимать во внимание требования 2.3.11 настоящей части. Дополнительные требования по определению нагрузок, которыми также следует руководствоваться, см. в 3.5.2.2 — 3.5.2.6 настоящей части.

3.5.2.2 Переменные ветровые нагрузки.

Связь между максимальной w_{max} и средней скоростью \overline{w} задается с помощью коэффициента порывистости G аналогично 2.2.2.3.

Имея в виду, что силуэт надводной части ПБУНС состоит из протяженных элементов, пульсационную составляющую ветровой нагрузки Q_w следует определять с учетом коэффициентов корреляции пульсаций ветра. Обобщенный коэффициент корреляции η следует принимать равным 0,8.

3.5.2.3 Волновые нагрузки.

Нагрузки от волнения являются одними из самых значимых для ПБУНС не только по интенсивности, но и по частотному составу, поскольку собственные периоды системы «натяжные связи — корпус» зачастую попадают в диапазон периодов энергонесущих волн.

Учитывая нерегулярную природу волновых условий, методология оценок волновых нагрузок должна опираться на статистические подходы.

3.5.2.3.1 При оценке статистических характеристик волновых нагрузок рекомендуется использовать один из двух подходов. Первый связан с представлением периода эксплуатации в виде набора стационарных режимов волнения, для каждого из которых ищется реакция сооружения с последующим суммированием реакций по всем режимам, характеризуемым высотой волны заданной обеспеченности, средним периодом волнения, курсовым углом и повторяемостью.

Другой подход базируется на концепции наиболее тяжелого режима, на котором наиболее вероятно реализуется экстремальная величина реакции (см. <u>2.2.3.5</u>, <u>3.1.4.10</u>, <u>3.1.4.11</u>, <u>3.1.4.12</u>).

3.5.2.3.2 В качестве базовой зависимости для оценок волновых нагрузок может использоваться уравнение Морисона с учетом дифракционных поправок (см. <u>2.3.9.1</u> и <u>2.3.9.2</u>).

При получении вероятностных характеристик волновых нагрузок в случае применения уравнения Морисона следует использовать распределение Вейбулла, параметры которого (масштаба и формы) следует определять на основе графиков и зависимостей, представленных на <u>рис. 3.1.4.9</u>. По оси абсцисс на этих графиках следует отложить отношение стандартных отклонений инерционной и скоростной составляющих нагрузок.

3.5.2.3.3 Метод, использующий уравнение Морисона, основан на предположении, что сооружение не вносит искажений в поле скоростей и ускорений движения частиц жидкости в волне, что не позволяет строго учесть эффекты дифракции и гидродинамическое взаимодействие элементов конструкции. Однако этот метод обеспечивает возможность в полной мере использовать различные теории волн, учитывать вязкостные эффекты, конечность амплитуды волны и колебаний сооружения, эффекты, связанные с мелководьем.

Метод целесообразно использовать, когда размеры сооружения или его конструктивных элементов малы настолько, что в волновых нагрузках превалируют вязкостные силы.

При больших диаметрах сооружений ($D/\lambda > 0.2$) и относительно малых высотах волн целесообразно использовать дифракционную теорию расчета. Уравнение Морисона предпочтительнее использовать при малых диаметрах ($D/\lambda < 0.2$).

Метод линейной дифракционной теории основывается на предположении о малости высоты волн и амплитуды колебаний платформы, потенциальном характере движения жидкости, исключающем строгий учет вязкостных эффектов. Однако этот метод позволяет учесть эффекты дифракции, возникающие при обтекании больших тел и связанные с искажением поля скоростей в волне. Метод применим для расчета нагрузок на сооружения с большими поперечными размерами или на многоколонные платформы, когда дифракционные эффекты существенны, а вязкостные силы пренебрежимо малы.

- **3.5.2.3.4** Требования <u>3.5.2.3.1 3.5.2.3.3</u> не исключают использования других подходов, одобряемых Регистром после соответствующего рассмотрения. В частности, может найти применение методика расчета волновых нагрузок на ПБУНС с помощью пакета программ ANCHORED STRUCTURES, одобренных Регистром.
- **3.5.2.3.5** Возмущающие силы волновых нагрузок, действующих на ПБУНС, допускается принимать аналогичными таковым для ППБУ соответствующего конструктивно-архитектурного типа, а для местных нагрузок на ПБУНС волновые нагрузки следует принимать согласно <u>3.2.3.4</u>.
 - 3.5.2.4 Высокочастотные волновые нагрузки.

При эксплуатации ПБУНС на низкочастотное волновое нагружение могут наложиться высокочастотные нагрузки, как правило импульсного или ударного характера (например, при реализации явлений «спрингинг» И «рингинг»), ПБУНС высокой частоты, соответственно, вертикальная вибрация импульсными нагрузками, и вертикальная вибрация ПБУНС высокой частоты, вызванная циклическими нагрузками от вертикальной, килевой и бортовой качки ПБУНС с резонансными или околорезонансными периодами. Ощутимое присутствие в ряде случаев высокочастотной составляющей заставляет рассматривать этот вопрос с точки зрения ее влияния на усталостную долговечность.

3.5.2.5 Вихревые нагрузки.

Силы вихревой природы, благодаря течению действующие на конструкции корпуса и натяжные связи, определяются в соответствии с нижеследующими пунктами.

3.5.2.5.1 Вихревая вибрация плохообтекаемых элементов конструкций ПБУНС, вызванная течением, при некоторых скоростях потока может приводить к неблагоприятным последствиям. Большое значение при этом имеет частота срыва вихрей, определяемая формулой

$$f = Sh \frac{v_t \sin \varphi}{D}, \Gamma ц \tag{3.5.2.5.1}$$

где Sh – число Струхаля;

 v_t — скорость потока, м/с;

характерный поперечный размер (диаметр) конструкции, м;

arphi — угол между осью конструкции и направлением потока.

Частота, указанная в формуле (<u>3.5.2.5.1</u>), соответствует изменению вихревых сил поперек потока; частота изменения сил вдоль потока в два раза выше частоты, определяемой по формуле (<u>3.5.2.5.1</u>).

3.5.2.5.2 В общем случае значение Sh, соответствующее частоте срыва вихрей, определяется в зависимости от числа Рейнольдса R_e . На основании многочисленных экспериментальных исследований для определения частоты возмущающих сил, действующих на плохообтекаемые конструкции, можно использовать следующие зависимости:

$$Sh=0,\!20$$
 при $R_e \leq 2,\!5 \, imes 10^5;$ $Sh=0,\!27$ при $R_e > 2,\!5 \, imes 10^5.$

- 3.5.2.5.3 При совпадении частот нестационарных сил с частотами свободных колебаний конструкции возникают резонансные явления с возможной значительной амплитудой колебаний. Вихревая вибрация в общем случае носит гидроупругий характер и должна исследоваться соответствующими методами. Главной особенностью возникающих автоколебаний являются растянутые по скорости зоны резонансных колебаний, что объясняется синхронизацией срывов вихрей автоколебаний.
- 3.5.2.5.4 Для протяженных конструкций, какими являются натяжные связи, резонансные колебания могут возникать на всех эксплуатационных скоростях потока. На протяженных натяжных связях возникают, как правило, поперечные колебания более интенсивные, чем колебания вдоль потока.
 - 3.5.2.6 Динамические аспекты поведения ПБУНС.
- 3.5.2.6.1 Динамические характеристики ПБУНС являются одними из важнейших при оценке ветроволновых, ледовых, сейсмических воздействий и воздействий от течения.
- 3.5.2.6.2 Частота собственных колебаний платформы при і-ой степени свободы определяется по формуле

$$p_i = \sqrt{K_i/M_i}, {(3.5.2.6.2)}$$

 K_i и M_i – соответственно жесткость системы ПБУНС, включая натяжные связи, и масса где ПБУНС с присоединенной массой (либо момент инерции масс относительно точки закрепления).

3.5.2.6.3 Жесткость системы с вертикальными связями при горизонтальном смещении для малых углов вращения, кН/м, определяется по формуле

$$K_{x} = \frac{n_{t.l.}T_{t.l.}}{L_{Rt.l.}} + \frac{n_{r}T_{r}}{L_{Rr}} + n_{t.l.} \left(W_{t.l.} - \gamma \frac{\pi D_{t.l.}^{2}}{4} \right) \frac{L_{At.l.}}{2L_{Rt.l.}} + n_{r} \left(W_{r} - \gamma \frac{\pi D_{r}^{2}}{4} \right) \frac{L_{Ar}}{2L_{Rr}},$$
(3.5.2.6.3)

число натяжных связен; где

число райзеров;

 $T_{t.l.}$ предварительное натяжение натяжной связи, кН;

натяжение райзера, кН;

вес натяжной связи на единицу длины в воздухе, кН/м;

вес райзера на единицу длины, включая содержащуюся в нем жидкость,

 $D_{t.l.}, D_r$ диаметр натяжной связи и райзера соответственно, м;

 $L_{At.l.}, L_{Ar}$ эффективная осевая длина натяжной связи и райзера соответственно, м;

 $L_{Rt.l.}$, L_{Rr} – радиус вращения натяжной связи;

удельный вес воды.

3.5.2.6.4 Нелинейность системы в горизонтальном направлении следует учитывать при соотношениях:

для системы с вертикальными связями —

$$u/L_{Rt,L} \ge 0.02;$$
 (3.5.2.6.4-1)

для системы с наклонными связями —

$$u/L_{Rt,l,\beta}\cos\beta \ge 0.1.$$
 (3.5.2.6.4-2)

3.5.2.6.5 Жесткость системы с вертикальными связями при вертикальных колебаниях, кН/м, определяется по формуле

$$K_z = n_{t,l} K_l + \rho g S,$$
 (3.5.2.6.5)

где S – суммарная площадь действующей ватерлинии, м 2 ;

 ρ — массовая плотность воды, к $H \cdot c^2/m^4$; G — ускорение силы тяжести, м/ c^2 .

3.5.2.6.6 Жесткость системы с наклонными связями при вертикальных колебаниях, кН/м, определяется по формуле

$$K_z = n_{t,l} K_l \sin \beta + \rho g S.$$
 (3.5.2.6.6)

3.5.2.6.7 Жесткость системы при вращательных колебаниях, кН/м, определяется по формуле

$$K_{xz} = 4K_l a^2 - \lambda_B, (3.5.2.6.7)$$

где $\lambda_e = G\overline{KG} - F_B\overline{KB}$,

G и F_B — масса конструкций и интеграл сил поддержания;

 \overline{KG} и \overline{KB} — соответственно отстояние центра тяжести и центра величины от уровня клюзовых точек, м;

половина расстояния между клюзовыми точками закрепления натяжных связей. м.

- 3.5.2.6.8 Присоединенные массы и моменты инерции присоединенных масс для *i*-ой степени свободы зависят от частоты волны и определяются на основе известных теоретических решений для тел простейшей формы и модельных испытаний для теп сложной конфигурации.
- 3.5.2.6.9 Динамические аспекты, связанные с воздействием айсбергов на ПБУНС, могут оказаться существенными при расчетах общей и местной прочности сооружений, а также запасов прочности якорных линий. Динамические эффекты появляются из-за развития колебаний ПБУНС и айсберга в результате контакта айсберга с корпусом ПБУНС или якорными линиями. Дальнейшее развитие контактного взаимодействия во многом определяется сложным загоном перемещения айсберга относительно ПБУНС.
- **3.5.2.6.10** При анализе динамических аспектов взаимодействия ПБУНС с айсбергом необходимо учитывать возможность потери айсбергом остойчивости, которая может привести к его опрокидыванию в непосредственной близости от ПБУНС в процессе контактного взаимодействия с корпусом или якорными линиями.

- 3.5.2.6.11 Ввиду существенной зависимости динамических эффектов параметров айсбергов, геометрических особенностей айсбергов ПБУНС. характеристик системы ее удержания и скорости движения льдов оценку динамических аспектов воздействий айсбергов на ПБУНС целесообразно выполнять на основании математического моделирования взаимодействия айсбергов сооружением с использованием компьютерных программ, одобренных Регистром.
 - 3.5.2.7 Глобальные нагрузки от айсбергов на ПБУНС.
- 3.5.2.7.1 Глобальные нагрузки от айсбергов на ПБУНС определяются в зависимости от площади контакта айсберга и сооружения. Площадь контакта, изменяющаяся во времени, должна вычисляться с учетом формы взаимодействующих объектов, их взаимной ориентации, направления дрейфа айсбергов и податливости платформы по методикам или с помощью программных средств, одобренных Регистром.
- **3.5.2.7.2** Глобальные нагрузки от айсбергов на ПБУНС вычисляются по следующей формуле:

$$F_{
m rop}=7,4A$$
 МПа при $A\leq 1$ м 2 ;
$$F_{
m rop}=7,4A^{0,3}$$
 МПа при 1 м $^2< A\leq 1$ м 2 ;
$$F_{
m rop}=1,48A$$
 МПа при $A\leq 10$ м 2 ,

где A — проекция текущей площади контакта на плоскость, перпендикулярную направлению внедрения сооружения в айсберг.

3.5.3 Критерии прочности.

- **3.5.3.1** Общие положения.
- **3.5.3.1.1** В целом для конструкций ПБУНС справедливы общие требования, содержащиеся в <u>2.4.1</u>. Дополнительно к перечисленным в <u>2.4.1.2</u> опасным состояниям должно быть включено следующее: появление ненатянутого состояния натяжной связи. Соответственно должен выдерживаться критерий обеспечения натяжения связи.
- **3.5.3.1.2** Угол натяжной связи в верхнем и нижнем соединениях должен выбираться из условия неповреждаемости связи в районе ее взаимодействия с конструктивными элементами корпуса и якоря с учетом характеристик податливых элементов.
- **3.5.3.1.3** Критерий устойчивости для конструктивных элементов корпуса и фундамента ПБУНС должен соответствовать требованиям 2.4.3.
 - 3.5.3.2 Критерий предельной прочности.
- **3.5.3.2.1** Критерий предельной прочности при экстремальном нагружении для корпуса и якоря определяется выражением ($\underline{2.4.2.2}$) с учетом выражений ($\underline{2.4.2.3.1}$) и ($\underline{2.4.2.3.2}$). При этом коэффициент безопасности η_1 должен определяться согласно $\underline{3.5.3.2.4}$.
- **3.5.3.2.2** Критерий предельной прочности при экстремальном нагружении для натяжных связей определяется выражением

$$T_{\Sigma} < \eta_1 A \sigma_t, T_{\Sigma} \le \eta_1 T_b, \tag{3.5.3.2.2}$$

где T_{Σ} – суммарное расчетное натяжение связи, вызванное всеми возможными расчетными постоянными и переменными нагрузками (компоненты натяжения охарактеризованы в <u>3.5.4</u>), кH;

A — расчетная площадь поперечного сечения связи, M^2 ;

 σ_t – временное сопротивление материала связи, МПа;

 T_{b} — разрывное усилие связи, кН.

- **3.5.3.2.3** Критерии предельной прочности конструкций ПБУНС для режимов рабочего, транспортировки, установки на точку и снятия с точки и соответственно коэффициенты безопасности должны соответствовать <u>2.4.2.4</u> и <u>2.4.2.5</u> настоящей части и 3.1.1.1 части II «Корпус» Правил МСП.
- **3.5.3.2.4** Коэффициенты безопасности η_1 для критериев <u>3.5.3.2.1</u> и <u>3.5.3.2.2</u> должны быть не более значений, приведенных в <u>табл. 3.5.3.2.4</u>.

Таблица 3.5.3.2.4

Наименование конструкции	Критерий	Конструктивные элементы					
	прочности	специальные	основные	второстепенные			
Корпус и фундамент вне зоны	п. <u>3.5.3.2.1,</u>	0,75	0,80	0,83			
взаимодействия с натяжными	критерий <u>2.4.2.3.1</u>						
СВЯЗЯМИ	п. <u>3.5.3.2.1</u> ,	1,25	1,35	1,45			
	критерий <u>2.4.2.3.2</u>						
Корпус и фундамент в зоне	п. <u>3.5.3.2.1,</u>	0,65	0,70	_			
взаимодействия с натяжными	критерий <u>2.4.2.3.1</u>						
связями	п. <u>3.5.3.2.1</u> ,	1,20	1,30	_			
	критерий <u>2.4.2.3.2</u>						
Натяжные связи	3.5.3.2.2	0,55	0,60	_			

- **3.5.3.2.5** Для режима замены натяжной связи коэффициент безопасности применяется в соответствии с <u>табл. 3.5.3.2.4</u>. При этом при выполнении расчетов необходимо учесть изменение посадки ПБУНС, вызванное приемом дополнительного балласта.
- **3.5.3.2.6** Дополнительные критерии предельной прочности для конструкций ледового пояса ПБУНС ледостойкого типа должны соответствовать 3.1.3 части II «Корпус» Правил МСП.
 - 3.5.3.3 Критерий усталостной прочности.
- **3.5.3.3.1** Критерий усталостной прочности должен применяться к конструктивным частям, для которых усталость может являться критической формой разрушения, например, узлы соединения натяжных опор с фундаментом и конструкциями корпуса, равно как и элементы натяжных связей. Перечень узлов согласовывается проектантом с Регистром.
- **3.5.3.3.2** Проектирование конструкций ПБУНС следует вести по критерию «безопасного повреждения», согласно которому реализация усталостного критерия ориентирована на стадию образования макротрещин, а не их развития. Характеристики предельно допустимых уровней относительной повреждаемости определены в 2.4.4.
- **3.5.3.3.3** Источником циклических нагрузок являются волнение, ветер, течение, лед, сейсмика. Исходными данными для каждого вида циклических нагрузок является повторяемость внешних условий.
- **3.5.3.3.4** При отсутствии необходимой статистической информации по нагруженности конструкций усталостную долговечность при волновых, сейсмических и переменных ледовых нагрузках рекомендуется определять на базе аналитических зависимостей.
- **3.5.3.3.5** Влияние высокочастотных составляющих волнового нагружения от «спрингинга» и «рингинга» (см. $\underline{3.5.2.4}$) на уровень усталостной долговечности натянутых связей определяется редукционным коэффициентом γ , зависящим от соотношения стандартных отклонений высокочастотной и низкочастотной составляющих, а также параметра m.

- 3.5.3.4 Критерий обеспечения натяжения связи.
- **3.5.3.4.1** Критерий обеспечения натяжения связи устанавливает требования, направленные на исключение появления ненатянутого состояния связи, в результате которого связь можно полагать исключенной из работы ПБУНС.
 - 3.5.3.4.2 Данный критерий может быть сформулирован следующим образом:

$$T_{\Sigma^{\vartheta}} \le \eta_1 * T_0,$$
 (3.5.3.4.2)

где $T_{\Sigma^{\vartheta}}$ — расчетное усилие связи, обусловленное расчетными нагрузками, которые приводят к минимизации натяжения связи, исключая предварительное (начальное) натяжение на тихой воде;

 T_0 — предварительное (начальное) натяжение связей на тихой воде;

 $\eta_1 * -$ коэффициент безопасности; $\eta_1 *= 0.70$.

3.5.4 Особенности расчета прочности и проектирования конструкций.

- **3.5.4.1** Общие положения.
- **3.5.4.1.1** Для расчета конструкции ПБУНС в целом справедливы положения, сформулированные в <u>2.5.1</u> и <u>2.5.2</u>. Дополнительно следует отметить, что важными реакциями ПБУНС являются линейные и угловые перемещения корпуса, а также внутренние осевые усилия в натяжных связях.
- 3.5.4.1.2 Повреждение любой из натяжных связей не должно вызывать прогрессирующего разрыва других связей или чрезмерных деформаций (повреждений) корпуса или фундамента в местах взаимодействия со связями. Регистром могут быть потребованы расчеты, подтверждающие, что в условиях воздействия внешних нагрузок, соответствующих наибольшим в течение одного года для данного района эксплуатации, прочность конструкции ПБУНС с поврежденной натяжной связью будет обеспечена.
- **3.5.4.1.3** Проектирование ПБУНС должно вестись таким образом, чтобы перемещения корпуса относительно донного фундамента не приводили к возникновению повреждений в конструкциях и, как следствие, к аварийным ситуациям.
 - **3.5.4.2** Корпус.
- **3.5.4.2.1** Конкретная методика расчета корпуса ПБУНС должна определяться особенностями конструкции. При расчете прочности корпуса многоколонной ПБУНС возможно применение требований <u>3.2</u> настоящей части, относящихся к ППБУ. При расчете прочности корпуса башенноподобной ПБУНС возможно применение требований 3.1 части II «Корпус» Правил МСП, относящихся к моноподам (моноконам).
- **3.5.4.2.2** Расчет балочных систем, отдельных балок, пластин, расчеты устойчивости конструктивных элементов следует выполнять в соответствии с 2.5.3 2.5.5.
- **3.5.4.2.3** Конструкции ледового пояса ледостойкой ПБУНС следует рассчитывать в соответствии с требованиями 3.1.4 части ІІ «Корпус» Правил МСП. При этом следует полагать, что ледовые образования не могут касаться районов соединения корпуса с натяжными связями.
- **3.5.4.2.4** Расчет сталебетонного ледового пояса следует выполнять в соответствии с требованиями 3.2 части II «Корпус» Правил МСП.
 - **3.5.4.3** Натяжные связи.
 - 3.5.4.3.1 Натяжная связь состоит из трех основных частей:

участка взаимодействия с корпусом;

участка взаимодействия с фундаментом;

основной части связи — соединения между указанными элементами.

Участок взаимодействия с корпусом предназначен для выполнения следующих функций: контроль и регулирование требуемого натяжения связи, соединение натяжной связи с корпусом, восприятие поперечных сил и изгибающих моментов. Участок взаимодействия с фундаментом предназначен для выполнения таких функций как: обеспечение конструктивного соединения связи с фундаментом, восприятие поперечных сил и изгибающих моментов.

Особенности работы каждого участка определяют характер напряженнодеформированного состояния и соответствующие подходы к расчету прочности конструкций.

3.5.4.3.2 Натяжение в любой натяжной связи является суммой ряда компонентов, имеющих различную физическую природу, т.е.:

$$T_{\Sigma} = \sum_{i=1}^{n} T_{i}, \tag{3.5.4.3.2}$$

где n — число принятых во внимание компонентов.

Эти компоненты делятся на две принципиально отличающиеся группы: детерминистические (включая постоянные) и случайные.

3.5.4.3.2.1 Полный состав компонентов натяжения выглядит следующим образом: детерминистические (или квазидетерминистические) компоненты:

 T_0 — начальное натяжение при среднем уровне глубины воды;

 T_t — натяжение от штормового нагона;

 T_{λ} — натяжение в связи от изменения веса балласта, грузов и т.п.;

 T_m — натяжение, вызванное опрокидывающим моментом от ветровой нагрузки и течением;

 T_s (волна или лед) — натяжение, вызванное просадкой из-за статических нагрузок и медленно изменяющегося смещения (волновой дрейф или постоянная составляющая ледовой нагрузки, ветер, течение);

 T_f (волна или лед) — натяжения, вызванные смещением фундамента при действии волны или льда;

случайные компоненты:

 T_{w} (или T_{ice}) — переменная составляющая натяжения от волновых или ледовых сил относительно среднего смещения (включает в себя натяжения от горизонтальных усилий, вертикальных усилий, качки (бортовой и килевой), в общем случае от вращательных усилий);

 T_i — натяжение, вызванное вертикальной, килевой и бортовой качкой, на собственной частоте колебаний платформы (рингинг и спрингинг, включая возможные подпапубные слеминговые нагрузки).

3.5.4.3.2.2 Стандартное отклонение суммарного натяжения определяется по формуле

$$\sigma_{T_{\Sigma}}^{2} = \sum_{i} \sigma_{T_{i}}^{2} + 2 \sum_{i} \sum_{j} \rho_{ij} \sigma_{T_{i}} \sigma_{T_{j}}, \tag{3.5.4.3.2.2}$$

где σ_{T_i} , σ_{T_j} — стандартные отклонения отдельных компонентов, определяемые на основе идей статистической динамики; ho_{ij} — коэффициент корреляции между отдельными компонентами натяжения.

3.5.4.3.2.3 В качестве закона распределения волновых натяжений рекомендуется распределение Вейбулла с параметрами масштаба a и формы K (см. 3.1.4.8 и 3.1.4.9).

- **3.5.4.3.2.4** В качестве закона распределения ледовых натяжений рекомендуется распределение Вейбулла с параметрами масштаба \bar{b} и формы K, определяемые в зависимости от отношения a_h/D , где a_h параметр масштаба распределения толщин льда, D диаметр преграды на уровне ватерлинии (см. 3.1.2.3.3 и 3.1.2.3.5 части II «Корпус» Правил МСП).
- **3.5.4.3.3** Основные этапы процедуры расчетного проектирования натяжных связей, включающие учет критериев предельной и усталостной прочности, а также влияние на связь корпуса и фундамента, могут быть представлены как следующие:

размеры платформы — определение общей конфигурации ПБУНС;

предварительный расчет связи — оценка предварительного натяжения и других входных данных, необходимых для определения размеров ПБУНС;

анализ реакций — установление движений сооружения и максимального и минимального натяжения связи;

горизонтальные реакции связи — вычисление изгибающих моментов в связи и горизонтальных колебаний;

минимальное натяжение — установление минимального допускаемого натяжения натянутой связи;

предварительный анализ напряжений — проверка предварительного уровня максимальных напряжений и усталостной долговечности;

проверка эксплуатационных ограничений — проверка приемлемых смещений сооружения, а также колебаний и перемещений связи;

усталостная долговечность — вычисление усталостной долговечности при воздействии комбинации осевых и изгибающих усилий;

конечная проверка — проверка максимальных напряжений, минимального натяжения, усталостной долговечности и т.п.;

взаимный анализ — определение необходимости проведения анализа взаимных реакций; модельные испытания (необязательны) — подтверждение колебаний и нагрузок натянутой связи.

- 3.5.4.4 Донный фундамент.
- **3.5.4.4.1** Основная функция донного фундамента заякоривание натяжных связей платформ, восприятие нагрузок от них и передача последних частично или полностью на грунт основания морского дна.

Основное требование к фундаментным системам — надежно удерживать совместно с натяжными связями плавучее сооружение в заданном месте открытого моря, ограничивать перемещение его в заданных допусках и обеспечивать тем самым нормальные условия эксплуатации. От надежной работы системы удержания зависит сохранность всего сооружения, срыв с места удержания недопустим.

- 3.5.4.4.2 Для удержания центральных натяжных связей могут использоваться конструкции фундаментов с забивными сваями, а также гравитационного или смешанного типа. Конструкции могут быть выполнены или в виде единой, удерживаемой сваями или массами, или их комбинацией, цельной конструкции, к которой крепятся все натяжные связи и райзеры, или в виде системы отдельных, независимых друг от друга фундаментных конструкций для групп или пучков натяжных связей и скважинных труб.
- В качестве периферийных фундаментных систем наряду с указанными могут рассматриваться якоря, состоящие из одной или нескольких засасывающих свай, а также якоря типа Stevmanta или SEPLA.
- **3.5.4.4.3** Передача нагрузки на грунт может быть достигнута разными способами, например, через натяжные связи, напрямую присоединенные к сваям, через поверхностные, опирающиеся на морское дно опорные плиты (ростверки), которые перераспределяют силы от натяжных связей на сваи и через них на грунт, через поверхностное гравитационное основание.

3.5.4.4.4 Расчеты донных фундаментов должны содержать расчеты деформирования и прочности фундаментной конструкции и расчеты устойчивости и перемещений фундамента на грунте.

При расчете фундаментной конструкции ПБУНС должны быть рассмотрены вопросы, учитывающие особенности и специфику условий работы этих конструкций:

эксцентриситеты нагружения, являющиеся результатом изменения усилий натяжной связи внутри группы;

последствия установки натяжной связи/райзера — возможные подъем (выбирание) и передислокация натяжных связей/райзера за время эксплуатационной жизни платформы;

позиционные (установочные) и эксплуатационные (регулировочные) расчетные допуски;

вопросы осмотра и контроля соответствия фундаментов требуемым эксплуатационным качествам.

- **3.5.4.4.5** Расчет прочности стальных, железобетонных и сталебетонных конструкций донных фундаментов следует выполнять в соответствии с приемлемыми требованиями, изложенными в **2.5** настоящей части и **3.2** части II «Корпус» Правил МСП.
- **3.5.4.4.6** Расчеты устойчивости фундаментов на грунте должны удовлетворять критериям, сформулированным в разд. 4.
 - **3.5.4.5** Соединения.
 - 3.5.4.5.1 Соединение корпуса с натяжными связями.
- **3.5.4.5.1.1** Конструкции соединения корпуса с натяжными связями воспринимают реакцию связи двумя опорными поясами:

верхним поясом, воспринимающим, в основном, силу натяжения связей;

нижним поясом, воспринимающим поперечные реакции, возникающие при горизонтальных смещениях платформы.

3.5.4.5.1.2 Конструкции, подкрепляющие верхний опорный пояс, должны быть рассчитаны на действие натяжителя и максимально возможную вертикальную реакцию связи. При этом должно быть проверено с учетом статики и динамики смещения платформы достаточное сопротивление конструкций:

потере устойчивости и необходимой жесткости;

напряжениям смятия, сдвига и изгиба.

Должна быть учтена возможная неравномерность распределения реакции натяжителя связи.

3.5.4.5.1.3 Конструкции, подкрепляющие нижний опорный пояс, должны быть рассчитаны на действие податливой вставки (элемента) и максимально возможной горизонтальной реакции с учетом статики и динамики смещения платформы. Должно быть проверено достаточное сопротивление указанных конструкций:

потере устойчивости:

напряжениям смятия, сдвига и изгиба, локальным пиковым контактным напряжениям.

- **3.5.4.5.1.4** Должна быть регламентирована достаточная твердость рабочих контактирующих поверхностей для обеспечения их работоспособности в течение всего срока службы платформы.
 - 3.5.4.5.2 Соединения якоря с натяжными связями.
- **3.5.4.5.2.1** Конструкции соединения якоря с натяжными связями представляют собой два опорных пояса:

верхний пояс с податливой вставкой, воспринимающий горизонтальные реакции при смещении платформы;

нижний пояс, воспринимающий вертикальные реакции при смещении платформы.

3.5.4.5.2.2 Конструкции, подкрепляющие верхний пояс якоря, должны быть рассчитаны на действие податливой вставки максимально возможной горизонтальной

реакции с учетом статического и динамического воздействия на платформу и натяжную связь. Должно быть проверено сопротивление конструкций:

потере устойчивости;

напряжениям смятия, изгиба и сдвига;

локальным пиковым контактным напряжениям;

внешнему давлению для сухих донных ящиков и изолированных объемов.

3.5.4.5.2.3 Конструкции, подкрепляющие нижний опорный пояс, должны быть рассчитаны, преимущественно, на действие вертикального максимально возможного с учетом статики и динамики натяжения связи. Должно быть проверено расчетным путем сопротивление конструкций якоря:

потере устойчивости и жесткости;

напряжениям смятия, сдвига и изгиба;

локальным пиковым напряжениям.

- **3.5.4.5.2.4** Конструкции соединения якоря с натяжной связью должны быть выполнены с запасом по толщине, учитывающим повышенный эрозионноабразивный износ и возможную химическую коррозию материала.
- **3.5.4.5.2.5** При использовании тросов в качестве натянутых связей конструкции верхнего и нижнего поясов могут сливаться в единую.
 - 3.5.4.5.3 Соединения элементов натяжной связи.
- **3.5.4.5.3.1** Основным конструктивным путем при проектировании равнопрочных натяжной связи ее соединений является снижение действующих напряжений путем увеличения площади сечения в соединении.
- **3.5.4.5.3.2** При проектировании соединений натяжной связи в расчетах ее прочности должны быть учтены:

общее натяжение связи;

общий изгиб связи в рассматриваемом районе;

локальный изгиб вследствие эксцентриситета сечения;

локальная концентрация напряжений вследствие особенностей исполнения соединения и/или сварного шва.

- **3.5.4.5.3.3** Если внутренний объем натяжной связи является изолированным, то в расчетах прочности должно быть дополнительно учтено влияние внешнего и внутреннего давлений на напряженное состояние соединения.
- **3.5.4.5.3.4** Для конструкций соединений и элементов натяжной связи должен быть выполнен проверочный расчет местной прочности на действие реакций, передаваемых с верхних и нижних опорных поясов конструкций якоря и корпуса с учетом деформации их податливых элементов.
- **3.5.4.5.3.5** Если проверка прочности соединений натяжной связи показывает, что прочность и долговечность их не обеспечивает реальный срок службы платформы, то следует повторить указанные расчеты уже с учетом процедуры замены натяжных связей в процессе эксплуатации платформы.
 - 3.5.4.5.4 Конструкции гидродемпфирующих устройств.
 - 3.5.4.5.4.1 Общие положения.
 - **3.5.4.5.4.1.1** Область распространения.

Настоящие положения распространяются на гидродемпфирующие устройства для плавучих сооружений, характеризующихся значительной качкой в эксплуатационных условиях, требующей своего смягчения, в частности, для платформ типа Spar.

- 3.5.4.5.4.1.2 Определения и пояснения.
- 3.5.4.5.4.1.2.1 В настоящих рекомендациях приняты следующие определения:

Высота закрылка — полная высота цилиндрической поверхности, перпендикулярной диску (или удвоенное расстояние от плоскости диска до крайней точки закрылка).

Демпфирующие устройства — горизонтальные диски, крепящиеся к корпусу платформы по ее высоте.

Закрылки демпферов — цилиндрические поверхности, установленные вертикально по краям демпфирующего диска.

Коэффициент перфораций — отношение площади неперфорированной поверхности к общей площади поверхности диска; коэффициент перфорации, равный 1, соответствует неперфорированному диску.

Относительный коэффициент сопротивления диска — коэффициент сопротивления рассматриваемого диска или системы дисков, отнесенный к коэффициенту сопротивления сплошного одиночного диска.

Перфорация — прорези кольцевидной или круговой форм в демпфирующем диске.

 Π л а т ф о р м а Spar — платформа на натяжных и якорных связях, предназначенная преимущественно для больших глубин, корпус которой вытянут по высоте.

3.5.4.5.4.1.3 Конструктивные элементы.

Конструктивные элементы платформ разделяются в зависимости от уровня напряжений, влияния возможного их повреждения на прочность и надежность плавучего сооружения на специальные, основные и второстепенные.

По степени ответственности гидродемпфирующие устройства (диски) следует отнести к категории основных, как элементы, обеспечивающие общую прочность корпуса (при выходе гидродемпфирующих дисков из строя увеличивается качка со всеми вытекающими отсюда последствиями в части снижения уровня общей прочности).

3.5.4.5.4.2 Принципы проектирования гидродемпфирующих устройств.

3.5.4.5.4.2.1 Общие положения.

Конструкции гидродемпфирующих устройств должны быть спроектированы таким образом, чтобы:

их эксплуатационные параметры удовлетворяли требованиям по умерению качки;

их прочность (применительно к внешним условиям районов эксплуатации) в течение всего срока службы удовлетворяла принятым критериям в следующих расчетных режимах: транспортировки, рабочем, выживания или экстремального нагружения.

3.5.4.5.4.2.2 Нагрузки.

При расчете гидродемпфера учитываются нагрузки, возникающие в ветроволновых условиях и от течения.

Нагрузки, которые должны рассматриваться при расчетах прочности конструкций гидродемпфирующих устройств, должны включать в себя:

глобальные и локальные гидродинамические нагрузки в условиях экстремального волнения с учетом ветра;

гидродинамические циклические нагрузки;

нагрузки от течения;

высокочастотные нагрузки импульсного или ударного характера (вертикальная вибрация сооружения высокой частоты, вызванная импульсными нагрузками, и вертикальная вибрация сооружения высокой частоты, вызванная циклическими нагрузками от вертикальной, килевой и бортовой качки сооружения, с резонансными или околорезонансными периодами). Ощутимое присутствие в ряде случаев высокочастотной составляющей заставляет рассматривать этот вопрос с точки зрения ее влияния на усталостную долговечность;

вихревые нагрузки; силы вихревой природы, действующие на демпфирующие устройства благодаря течению, определяются в соответствии с учетом анализа условия

$$f = Sh \frac{v_t}{D}$$
, Γu , (3.5.4.5.4.2.2)

где *Sh* – число Струхаля,

скорость потока, м/с,

характерный поперечный размер (диаметр) конструкции демпфирующего устройства,

частота срыва вихрей.

Частота, определяемая по формуле (3.5.4.5.4.2.2), соответствует изменению вихревых сил поперек потока, частота изменения сил вдоль потока в два раза выше частоты, определяемой по формуле (3.5.4.5.4.2.2).

В общем случае значение Sh , соответствующее частоте срыва вихрей, определяется в зависимости от числа Рейнольдса R_{ρ} .

При совпадении частот нестационарных сил с частотами свободных колебаний сооружения (или отдельных его частей) возникают резонансные явления с возможной значительной амплитудой колебаний. Вихревая вибрация в общем случае носит гидроупругий характер и должна исследоваться соответствующими методами.

3.5.4.5.4.2.3 Критерии прочности.

Конструкция демпфирующих дисков должна быть спроектирована таким образом, чтобы в течение ее срока службы выполнялось общее требование безопасности

$$\Phi \le R\eta,\tag{3.5.4.5.4.2.3-1}$$

расчетное значение обобщенного силового воздействия, по которому где производится оценка предельного состояния;

расчетное значение обобщенной несущей способности;

коэффициент безопасности, который связан со степенью ответственности демпфирующего диска, за прочность и надежность сооружения.

При выполнении требования (3.5.4.5.4.2.3-1) практически должны быть исключены следующие виды опасных состояний:

чрезмерные деформации материала;

потеря устойчивости формы;

распространение усталостных трещин.

Соответственно должны выдерживаться критерии предельной и усталостной прочности, а также устойчивости.

Для элементов конструкции демпфирующих дисков в части прочности и устойчивости справедливы положения, содержащиеся в Правилах ПБУ.

Критерий предельной прочности для режима выживания (экстремального нагружения) определяется выражением

$$\sigma_d \le \eta_1 R_d, \tag{3.5.4.5.4.2.3-2}$$

где расчетные напряжения в конструкции при действии наиболее неблагоприятных сочетаний нагрузок, МПа;

коэффициент безопасности; коэффициент безопасности для конструкций η_1 демпфирующих устройств принимается равным $\eta_1 = 0.8$;

 R_d расчетный предел текучести материала.

Критерий устойчивости регламентирует требования к параметрам элементов конструкции демпферов, обеспечивающим устойчивое состояние заданной формы. Опасными считаются критические напряжения, соответствующие переходу конструкции из одной формы равновесия в другую.

Критерий устойчивости определяется выражением

$$\sigma_x \le \eta_2 \sigma_{cr},\tag{3.5.4.5.4.2.3-3}$$

где σ_x – расчетные напряжения в конструкции демпфера для заданного расчетного режима, МПа,

 σ_{cr} – критические напряжения, МПа,

 η_2 – коэффициент безопасности; коэффициент безопасности должен быть не более

 $\eta_2 = 0.84(1 - 0.2R_d/\sigma_e) + 0.06$

где σ_e – эйлерово напряжение, соответствующее минимальному значению всех рассматриваемых эйлеровых напряжений и форм напряженного состояния, МПа.

Влияние высокочастотных составляющих волнового нагружения от явлений, описанных в <u>3.5.4.5.4.2.2</u>, на уровень усталостной долговечности натянутых связей определяется редукционным коэффициентом, зависящим от соотношения стандартных отклонений высокочастотной и низкочастотной составляющих.

- **3.5.4.5.4.3** Специальные вопросы проектирования конструкций гидродемпфирующих устройств.
- 3.5.4.5.4.3.1 Определение гидродинамических сил, действующих на систему гидродемпфирующих устройств, в первом приближении может производиться без учета колебаний в горизонтальном направлении, а только в вертикальном в вязкой жидкости. На достаточном расстоянии от обтекаемого тела вода может рассматриваться неподвижной относительно дна. На самом демпфере ставятся условия прилипания (т.е. скорость воды совпадает со скоростью демпфера). При этом демпфер может совершать как поступательное движение (стационарное обтекание), так и колебаться (нестационарное обтекание). На входе, выходе и боковой границе следует задавать скорость равную скорости набегающего потока, что означает пренебрежимо малое влияние демпфера на границе области.
- **3.5.4.5.4.3.2** При щелевой перфорации задача носит симметричный характер относительно центральной оси диска, что обусловливает исследование течения в двумерной области.

При моделировании обтекания дискового демпфера перфорированными круглыми или квадратными отверстиями задачу следует рассматривать в трехмерной постановке.

- **3.5.4.5.4.3.3** Гидродинамическая нагрузка на гидродемпфирующие устройства имеет два компонента: скоростной (вязкостный) и инерционный.
- **3.5.4.5.4.3.4** Скоростной компонент гидродинамической нагрузки пропорционален квадрату скорости и коэффициенту скоростного сопротивления \mathcal{C}_v :

$$C_v = \frac{F_v}{(\rho V^2 S)/2},$$
 (3.5.4.5.4.3.4-1)

где F_v – компонент силы сопротивления диска;

Скорость набегающего потока;

S – площадь диска;

 ρ — массовая плотность воды.

Инерционный компонент гидродинамической нагрузки пропорционален присоединенной массе.

Присоединенная масса определяется по формуле

$$m_a = F_a/a_y,$$
 (3.5.4.5.4.3.4-2)

где a_y – ускорение диска.

- 3.5.4.5.4.3.5 При оптимизации гидродинамических нагрузок, действующих на гидродемпфирующие устройства, рекомендуется рассмотреть следующие факторы: степень перфорации дисков, форму перфорации, влияние «закрылков», систему демпферов, влияние дна.
- 3.5.4.5.4.3.5.1 Степень перфорации. Влияние степени перфорации может быть неоднозначным: при уменьшении коэффициента перфорации коэффициент сопротивления сначала может существенно увеличиваться, а затем плавно падать, присоединенная масса имеет тенденцию быстро уменьшаться. Как правило, наибольший эффект достигается при коэффициенте перфорации 0,9.

При перфорации с помощью отверстий с уменьшением их диаметра динамический коэффициент сопротивления и присоединенная масса слабо растут.

3.5.4.5.4.3.5.2 Форма перфорации. Перфорация демпфера квадратными и круглыми отверстиями обеспечивает качественно и количественно сходные эффекты, что и перфорация концентрическими щелями. При этом динамический коэффициент повышается в 1,5 — 1,8 раз, а присоединенная масса падает на 20 — 30 % по сравнению с неперфорированным демпфером.

Форма отверстий (круглая или квадратная), которыми производится перфорация демпфера, практически не влияет на его динамические характеристики.

3.5.4.5.4.3.5.3 Влияние закрылков. Наличие закрылков несколько уменьшает коэффициент сопротивления и увеличивает присоединенную массу. При увеличении высоты закрылков коэффициент сопротивления растет с одновременным увеличением присоединенной массы. Применение закрылков повышает прочностные свойства демпфера. При использовании конусных «закрылков» динамический коэффициент сопротивления растет с увеличением угла α от 0° (прямые закрылки) до 90° (отсутствие закрылков) почти линейно, а присоединенная масса сначала незначительно растет, а затем падает.

Влияние длины (периода) волны, как правило, несущественно.

- **3.5.4.5.4.3.5.4** Ребра жесткости. Использование концентрических ребер жесткости для повышения прочностных свойств демпфера практически не сказывается на его гидродинамических свойствах.
- **3.5.4.5.4.3.5.5** Система демпферов. При увеличении расстояния между соседними дисками системы из трех дисков растут относительный коэффициент сопротивления и безразмерная присоединенная масса.
- **3.5.4.5.4.3.5.6** Система перфорированных демпферов. Коэффициенты сопротивления и присоединенная масса системы трех перфорированных демпферов существенно превосходят сопротивление одиночного сплошного демпфера.
- **3.5.4.5.4.3.5.7** Влияние дна. При достаточно большом расстоянии между дисками системы из трех дисков близость дна увеличивает относительный коэффициент сопротивления и при практически неизменной безразмерной присоединенной массе.
- **3.5.4.5.4.3.6** Введение гидродемпфирующих устройств может существенно изменить присоединенную массу платформы в целом, увеличивая собственный период вертикальных колебаний платформы.
- **3.5.4.5.4.3.7** Введение гидродемпфирующих устройств может снизить вертикальную волновую нагрузку на платформу в целом.

- **3.5.4.5.4.3.8** Введение системы гидродемпфирующих устройств может в несколько раз снизить амплитуду вертикальных колебаний платформы.
- 3.5.4.5.4.3.9 При выполнении расчетов гидродемпфирующих устройств рекомендуется использование модели пористой среды, позволяющей получить результаты, качественно похожие на результаты моделирования реальных отверстий. При этом данные этих расчетов можно рассматривать как асимптотические оценки коэффициентов сопротивления и присоединенных масс в случае «бесконечного числа отверстий бесконечно малого диаметра» при фиксированном коэффициенте перфорации.
 - 3.5.4.6 Особенности расчета конструкций при сейсмических воздействиях.
- 3.5.4.6.1 При проектировании ПБУНС в сейсмически активных районах должны быть обеспечены прочность и несущая способность якорей, прочность натяжных связей и корпуса ПБУНС с учетом возможности крупномасштабных деформаций морского дна, возможного разжижения грунта, а также «моретрясения», то есть гидроакустического воздействия на конструкции ПБУНС.
- **3.5.4.6.2** Следует избегать размещения якорей на участках морского дна, где при землетрясении возможны крупномасштабные деформации поверхности грунта.

Если, тем не менее, якоря размещены на участках дна с большими сейсмическими подвижками, то необходимо выполнять проверку несущей способности якорей с учетом указанных подвижек дна (например, оползней подводных склонов).

3.5.4.6.3 При оценке надежности якорей с учетом сейсмических воздействий должны быть обеспечены как прочность самой конструкции, так и несущая способность подверженных динамическим воздействиям грунтов дна.

Следует учитывать возможность временного снижения несущей способности якорей вследствие динамического разжижения грунта. При этом должны быть определены степень снижения несущей способности, а также сроки восстановления расчетной несущей способности (исходя из времени, требуемого для консолидации грунта). Указанные сроки рекомендуется учитывать при выборе расчетных характеристик грунтов основания применительно к различным сочетаниям нагрузок и воздействий.

- **3.5.4.6.4** В расчетах напряженного состояния и устойчивости якорей следует учитывать массу якоря, а также присоединенные массы воды и якорных связей.
- 3.5.4.6.5 Последствия передачи сейсмического воздействия со дна акватории по натяжным связям на корпус ПБУНС следует учитывать в тех случаях, когда сейсмические горизонтальные и вертикальные перемещения участков дна акватории в районе нахождения анкерных опор превышают соответствующие допускаемые смещения ПБУНС от волновых воздействий в режиме бурения. В этих случаях усилия в натяжных связях должны определяться по величинам ожидаемых сейсмических перемещений анкерных опор на дне акватории.

Величины указанных усилий следует использовать для проверки прочности натяжных связей и в расчетах на прочность конструкций ПБУНС, в том числе элементов крепления натяжных связей к корпусу ПБУНС и к анкерной опоре.

3.5.4.6.6 В качестве расчетного гидроакустического воздействия на корпус ПБУНС и натяжные связи следует рассматривать приложенное к днищу ПБУНС гидродинамическое давление, изменяющееся во времени по гармоническому закону с периодом T^{de} и амплитудным значением p_{amp}^{de} , определяемым по формуле

$$p_{amp}^{de} = kT^{de} \exp(0.72J^{de}),$$
 (3.5.4.6.6)

где $k = 0,003, M\Pi a \cdot c^{-1}.$

При отсутствии достаточной сейсмологической информации разрешается принимать величину T^{de} равной 0,50 с.

- 3.5.5 Требования к материалам.
- 3.5.5.1 Общее.
- **3.5.5.1.1** Материалы, используемые в конструкциях корпуса и якоря ПБУНС вне районов соединения с натяжными связями, должны соответствовать требованиям <u>1.5.1</u> настоящей части и части XII «Материалы».
- **3.5.5.1.2** Данный раздел включает уточненные требования к материалу корпуса и якоря в районах соединений с натяжными связями (в основном, специальные конструктивные элементы), а также требования к материалу натяжных связей, которые следует рассматривать как дополнение к требованиям, содержащимся в <u>1.5.1</u> настоящей части и части XII «Материалы».
- **3.5.5.1.3** Для всех перечисленных в <u>3.5.5.1.2</u> конструкций должно быть оценено сопротивление материалов водородной хрупкости.
 - **3.5.5.2** Kopnyc.
- **3.5.5.2.1** Совокупность механических свойств материала конструкций корпуса, взаимодействующих с натяжной связью, натяжителем и податливым элементом, должна быть оценена дополнительно в отношении следующих видов возможного повреждения вследствие локальных контактных напряжений на рабочих поверхностях конструктивных элементов:

пластического деформирования, смятия и выдавливания материала;

эрозионно-абразивного износа поверхностей контакта;

усталостного разрушения по поверхности износа;

хрупкого разрушения по поверхности износа и выкрашивания материала по поверхности износа.

- 3.5.5.2.2 Для конструкций корпуса, воспринимающих реакции натяжной связи, желательно использование стальных материалов в толщинах менее 70 мм с пределом текучести $\sigma_{0.2} \leq 550\sigma_t$, МПа.
- **3.5.5.2.3** Временное сопротивление материала конструкций корпуса σ , для обеспечения достаточного запаса по прочности и пластичности должно отвечать соотношению $\sigma_{0.2} \leq 0.85 \sigma_r$.
- **3.5.5.2.4** Для обеспечения достаточной пластичности специальных конструкций корпуса ПБУНС материал должен иметь остаточное относительное сужение Z_z при растяжении в направлении, перпендикулярном плоскости листа: $Z_z \geq 25~\%$. Относительное удлинение A_5 при испытании образцов должно составлять не менее $A_5 \geq 18~\%$.
- **3.5.5.2.5** Контактные рабочие поверхности специальных конструкций корпуса должны быть рассчитаны на смятие и обладать достаточной твердостью, препятствующей абразивному износу поверхностей.
- **3.5.5.2.6** Принимая во внимание существенные динамические составляющие нагружения для изготовления специальных корпусных конструкций не допускаются стали нормальной прочности.
 - 3.5.5.3 Якорь.
- **3.5.5.3.1** Механические свойства конструкций якоря, взаимодействующих с натяжными связями, должны быть оценены в отношении видов повреждений, перечисленных в <u>3.5.5.2.1</u>, а также в отношении:

дополнительного абразивного износа с участием поднятых водой масс донного грунта;

повышенной химической коррозии;

сопротивления коррозионному растрескиванию под напряжением.

- **3.5.5.3.2** Для специальных конструкций якоря желательно использование стальных материалов в толщинах менее 120 мм и пределом текучести менее $\sigma_{0,2} \le 550$ МПа с контролем сплошности в толщинах более 70 мм.
- **3.5.5.3.3** Временное сопротивление материала должно отвечать требованиям <u>3.5.5.2.3</u>.
- **3.5.5.3.4** Материал специальных конструкций якоря должен иметь относительное сужение при растяжении в направлении толщины листа $Z_z \ge 20~\%$. Относительное сужение A_5 материала, проверенное при вырезке образца из середины по толщине проката должно составить не менее $A_5 \ge 18~\%$.
- **3.5.5.3.5** Требования к контактным рабочим поверхностям конструкций якоря должны соответствовать <u>3.5.5.2.5</u>.
- **3.5.5.3.6** Характеристики трещиностойкости специальных конструкций якоря должны удовлетворять <u>3.5.5.2.6</u>. Образцы для испытаний должны быть вырезаны из подповерхностного слоя материала.
 - **3.5.5.4** Натяжная связь.
- **3.5.5.4.1** Механические свойства материала натяжной связи должны быть проверены в отношении его сопротивления видам возможного разрушения, соответствующим функциональному назначению участка связи.
- **3.5.5.4.2** Требования к материалу участка взаимодействия с якорем должны соответствовать требованиям <u>3.5.5.1</u> и <u>3.5.5.3</u>.
- **3.5.5.4.3** Требования к материалу участка взаимодействия с корпусом должны соответствовать требованиям <u>3.5.5.1</u> и <u>3.5.5.2</u>.
- **3.5.5.4.4** Требования к материалу средней части натяжной связи должны отвечать требованию 3.5.5.1 и 3.5.5.2.
- . **3.5.5.4.5** Предел текучести $\sigma_{0,2}^0$ и предел прочности σ_t^0 в окружном направлении связи должны отвечать требованиям:

$$\sigma_{0,2}^0 \ge 0.9\sigma_{0,2};$$
 (3.5.5.4.5-1)

$$\sigma_{0,2}^0 \ge 0.9\sigma_{\rm t}.$$
 (3.5.5.4.5-2)

3.5.5.4.6 Для соединительной муфты натяжной связи работа удара должна составлять:

на образцах вдоль проката KVL≥68 Дж;

на образцах поперек проката KVT≥46 Дж.

Величина критического раскрытия трещины при температуре, равной температуре испытаний ударной вязкости, должна составлять:

для основного металла CTOD≥0,25 мм;

для зоны термического влияния CTOD≥0,18 мм (при наличии сварки).

Температура нулевой вязкости разрушения должна составлять NDT≤ - 40 °C при толщине стенки менее 40 мм.

4 УСТОЙЧИВОСТЬ СПБУ НА ГРУНТЕ

4.1 ОБЩИЕ ТРЕБОВАНИЯ

- **4.1.1** Взаимодействие опорных конструкций СПБУ с грунтом оказывает существенное влияние на характеристики с позиций общей устойчивости сооружений.
- **4.1.2** Способ удержания СПБУ на грунте гравитационный с задавливанием опорных колонн в грунт.

4.2 УСТОЙЧИВОСТЬ СПБУ НА ГРУНТЕ

4.2.1 Устойчивость против опрокидывания на грунте.

Коэффициент запаса против опрокидывания СПБУ на грунте должен быть не менее

$$K_{cap} = M_r / M_{cap} \ge 1,50,$$
 (4.2.1-1)

восстанавливающий момент от сил веса СПБУ. кНм: где

суммарный опрокидывающий момент от экстремального воздействия внешних сил относительно плоскости опирания СПБУ на грунт, кНм.

Должна быть рассмотрена наихудшая комбинация восстанавливающего и опрокидывающего моментов в зависимости от случая загрузки СПБУ, величины и направления экстремальных внешних воздействий.

При достаточно развитых по площади опорных поверхностях башмаков должно быть учтено наличие опорного момента, т.е. в качестве критериального следует рассматривать условие

$$M_r/(M_{cap} - M_{sup}) \ge 1,50,$$
 (4.2.1-2)

 M_{sup} — опорный изгибающий момент со стороны грунта, к ${\sf Hm}$. где

4.2.2 Устойчивость при сдвиге.

Коэффициент запаса против сдвига СПБУ на грунте должен быть не менее

$$K_{sh} = Pf/T \ge 1,50,$$
 (4.2.2)

где весовая нагрузка СПБУ, приходящаяся на одну опорную колонну, с учетом вытесненной воды;

расчетное значение суммарной сдвиговой силы в районе основания;

коэффициент трения опорной поверхности о грунт.

Должна быть рассмотрена наихудшая комбинация веса понтона в зависимости от случая загрузки СПБУ и суммарной сдвиговой силы в зависимости от направления экстремальных внешних воздействий.

Устойчивость при просадке.

Коэффициент запаса при просадке одной из колонн СПБУ в грунт должен быть не менее

$$N_3/N > K_{sub},$$
 (4.2.3)

где

усилие задавливания;расчетное значение суммарной осевой силы;

 $K_{sub} = 1,10$ — для четырехопорных установок; $K_{sub} = 1,05$ — для трехопорных установок.

Должна быть рассмотрена наихудшая ситуация с точки зрения просадки колонн, поскольку именно это условие является наиболее часто критическим. Условие просадки определяет для трехопорных установок необходимое количество балласта и влияет на объем и планировку помещений в понтоне.

ПРИЛОЖЕНИЕ 1

ХАРАКТЕРИСТИКИ ВЕТРОВОЛНОВЫХ УСЛОВИЙ

Таблица 1 Значения экстремальных скоростей ветра и высот волн, возможные один раз в 50 лет

Mope	Средняя скорость ветра	Высота волны 3%-ной				
	(период осреднения 10 мин)	обеспеченности h_{50} , м				
	\overline{W}_{50} , м/с					
Каспийское	45,0	13,0				
Черное	43,0	12,5				
Баренцево	46,0	19,0				
Охотское	48,0	19,0				

Таблица 2 Повторяемость высот и периодов волн на Каспийском море, %

						-11-					-,	
$ar{ au}$, c							$h_{3\%}$, M					
	0–1	1–2	2–3	3–4	4–5	5–6	6–7	7–8	8–9	9–10	10–11	11–12
0–1	7,11											
1–2	14,58											
2–3	6,44	20,21										
3–4	0,62	9,11	5,24									
4–5	0,33	6,32	10,02	5,36								
5–6	0,08	3,17	1,12	0,70	0,68							
6–7	0,07	1,54	0,66	0,49	0,44	0,05						
7–8	0,05	1,38	0,40	0,29	0,37	0,06	0,04	0,03				
8–9	0,03	0,97	0,27	0,23	0,21	0,07	0,06	0,03	0,005			
9–10	0,02	0,05	0,05	0,16	0,17	0,12	0,05	0,02	0,015	0,013	0,010	0,005
10–11	0,009	0,009	0,01	0,05	0,05	0,05	0,04	0,01	0,010	0,010	0,005	0,005
11–12	0,005	0,005	0,005	0,03	0,03	0,03	0,03	0,005	0,005	0,003	0,002	0,001
12–13	0,002	0,002	0,001	0,005	0,01	0,01	0,01	0,001	0,003	0,002	0,001	0,001

Таблица 3 Повторяемость высот волн и скоростей ветра на Каспийском море, %

											,	
\overline{W} , м/с							$h_{3\%}$ N	И				
	0–1	1–2	2 – 3	3 – 4	4–5	5 – 6	6–7	7 – 8	8 – 9	9–10	10–11	11–12
2 – 4	7,34	6,82	2,59	0,78	0,22	0,15	0,03	0,001				
4 – 6	7,80	7,76	4,42	1,02	0,43	0,26	0,08	0,003	0,001			
6 – 8	6,22	7,87	2,89	1,51	0,31	0,12	0,07	0,002	0,001			
8–10	4,32	7,95	2,80	0,71	0,17	0,06	0,01	0,007	0,002	0,002		
10–12	2,25	5,88	2,06	0,68	0,16	0,03	0,01	0,005	0,002	0,002		
12–14	1,15	3,35	1,58	0,57	0,15	0,01	0,01	0,009	0,009	0,005	0,004	
14–16	0,88	3,24	0,37	0,34	0,13	0,01	0,009	0,008	0,006	0,005	0,004	0,002
16–18		0,76	0,26	0,24	0,12	0,009	0,008	0,007	0,006	0,005	0,005	0,003
18 – 20		0,01	0,01	0,13	0,11	0,009	0,006	0,006	0,005	0,004	0,002	0,003
20 – 22		0,008	0,008	0,009	0,09	0,009	0,006	0,006	0,005	0,004	0,002	0,002
22 – 24		0,005	0,005	0,008	0,08	0,004	0,002	0,002	0,001	0,001	0,001	0,002
24 – 26		0,005	0,005	0,006	0,008	0,003	0,002	0,001	<0,001	<0,001	<0,001	<0,001

Таблица 4 Повторяемость высот и периодов волн на Черном море, %

	. 102.10 рисков 22.100 г. и пориодор 201111111 горион пород 70												
$ar{ au}$, C						I	n _{3%} M						
	0–1	1–2	2–3	3–4	4–5	5–6	6–7	7–8	8–9	9–10	10–11	11–12	
0–1	2,31												
1–2	12,10												
2–3	16,45	10,14											
3–4	8,42	9,95	3,83										
4–5	6,36	8,90	4,34	1,20									
5–6	1,72	4,12	0,85	0,33	0,26								
6–7	0,94	3,11	0,30	0,17	0,14	0,06							
7–8	0,80	0,50	0,10	0,12	0,14	0,11	0,05	0,01					
8–9	0,49	0,21	0,05	0,09	0,13	0,10	0,04	0,01	0,007				
9–10	0,24	0,06	0,02	0,07	0,11	0,08	0,01	0,009	0,006	0,002	0,002	0,001	
10–11	0,11	0,007	0,006	0,02	0,02	0,01	0,008	0,008	0,004	0,002	0,002	0,001	
11–12	0,06	0,003	0,002	0,006	0,007	0,008	0,008	0,007	0,002	<0,001	<0,001	<0,001	
12–13	0,004	0,001	<0,001	0,001	0,005	0,006	0,007	0,006	0,001	<0,001	<0,001	<0,001	

Таблица 5 Повторяемость высот волн и скоростей ветра на Черном море, %

\overline{W} , м/с							$h_{3\%}$. N	l					
	0–1	1–2	2–3	3–4	4–5	5–6	6–7	7–8	8–9	9–10	10–11	11–12	
2 – 4	16,22	2,99	1,45	0,20	0,11	0,02	0,01	0,001					
4 – 6	13,67	6,21	2,94	0,90	0,24	0,03	0,006	0,002					
6 – 8	8,87	6,46	1,72	0,76	0,09	0,07	0,02	0,01	0,001	0,001			
8–10	5,34	5,62	1,45	0,42	0,08	0,05	0,02	0,01	0,008	0,001	0,001		
10–12	2,65	3,01	1,05	0,14	0,07	0,04	0,02	0,01	0,005	0,001	0,001	0,001	
12–14	1,60	1,30	0,93	0,08	0,05	0,02	0,01	0,006	0,004	0,001	0,001	<0,001	
14–16	0,70	0,72	0,45	0,07	0,03	0,01	0,008	0,005	0,003	0,001	0,001	<0,001	
16–18	0,53	0,39	0,34	0,05	0,01	0,008	0,006	0,004	0,002	0,001	< 0,001	<0,001	
18 – 20	0,42	0,32	0,08	0,03	0,009	0,007	0,005	0,003	0,002	<0,001	< 0,001	<0,001	
20 – 22	0,01	0,06	0,07	0,01	0,007	0,006	0,003	0,001	0,001	<0,001	< 0,001	<0,001	
22 – 24	<0,001	0,04	0,05	0,006	0,005	0,005	0,002	0,001	0,001	<0,001	< 0,001	<0,001	
24 – 26	<0,001	0,02	0,03	0,002	0,002	0,001	0,001	<0,001	<0,001	<0,001	< 0,001	<0,001	
26 – 28	<0,001	0,009	0,01	0,001	0,001	0,001	0,001	<0,001	<0,001	<0,001	< 0,001	<0,001	

Таблица 6 Повторяемость высот и периодов волн на Баренцевом море, %

$\bar{ au}$, c	$h_{3\%}$. M													
	0–1	1–2	2–3	3–4	4–5	5–6	6–7	7–8	8–9	9–10	10–11	11–12	12–13	13–14
0–1	0,51													
1 – 2	1,62													
2 – 3	3,65	4,22												
3 – 4	2,75	16,18	8,03											
4–5	1,88	10,92	6,03	2,21										
5 – 6	0,82	3,33	5,86	5,72	3,64									
6 – 7	0,46	1,18	2,98	2,35	2,05	1,03	0,75							
7 – 8	0,15	0,59	1,73	0,99	0,43	0,35	0,21	0,19	0,08	0,06				
8 – 9	0,08	0,46	1,02	0,72	0,19	0,18	0,12	0,11	0,07	0,05	0,01	0,008		
9 – 10	0,05	0,07	0,78	0,57	0,14	0,13	0,10	0,10	0,06	0,04	0,02	0,01	0,007	0,006
10–11	0,01	0,03	0,44	0,32	0,06	0,06	0,05	0,05	0,02	0,02	0,02	0,01	0,008	0,003
11 – 12	0,01	0,009	0,12	0,10	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,008	0,006	0,001
12–13	0,006	0,007	0,007	0,009	0,01	0,01	0,01	0,01	0,01	0,009	0,007	0,006	0,005	0,001
13 – 14	0,003	0,003	0,003	0,008	0,01	0,01	0,01	0,009	0,009	0,008	0,007	0,006	0,003	<0,001
14–15	0,001	0,001	0,001	0,004	0,006	0,006	0,007	0,008	0,009	0,007	0,006	0,005	0,002	<0,001

Таблица 7 Повторяемость высот волн и скоростей ветра на Баренцевом море, %

	Trestrephenicors services corporated services appeared by 70													
\overline{W} , м/с							h	3%. M						
	0 – 1	1–2	2 – 3	3 – 4	4 – 5	5 - 6	6 - 7	7 – 8	8 - 9	9 – 10	10–11	11 – 12	12-13	13 – 14
2 – 4	3,56	8,02	1,14	0,21	0,05	0,02	0,004							
4 – 6	4,67	9,56	3,51	0,56	0,45	0,10	0,07	0,04	0,03	0,009	0,002			
6 – 8	2,30	7,60	5,65	1,58	0,67	0,11	0,08	0,06	0,01	0,007	0,003			
8 –10	0,47	5,96	5,43	3,00	1,16	0,40	0,16	0,10	0,04	0,005	0,003			
10–12	<0,001	3,65	4,92	2,61	0,34	0,21	0,12	0,10	0,03	0,02	0,007			
12–14	<0,001	1,98	3,61	2,08	0,31	0,18	0,08	0,06	0,03	0,02	0,008			
14–16	<0,001	0,23	2,04	1,97	0,23	0,17	0,05	0,04	0,03	0,02	0,001			
16–18	<0,001	0,006	0,55	0,50	0,19	0,16	0,05	0,04	0,03	0,01	0,01	0,008	0,006	
18 – 20	<0,001	<0,001	0,15	0,32	0,16	0,15	0,04	0,03	0,03	0,01	0,01	0,01	0,005	0,001
20 – 22	<0,001	<0,001	<0,001	0,09	0,09	0,08	0,04	0,03	0,02	0,01	0,01	0,01	0,004	0,002
22 – 24	<0,001	<0,001	<0,001	0,07	0,06	0,06	0,03	0,02	0,02	0,01	0,01	0,008	0,004	0,002
24 – 26	<0,001	<0,001	<0,001	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,008	0,003	0,001
26 – 28	<0,001	<0,001	<0,001	0,005	0,006	0,007	0,008	0,009	0,009	0,009	0,009	0,007	0,003	0,001
>28	<0,001	<0,001	<0,001	<0,001	<0,001	0,001	0,005	0,009	0,009	0,009	0,008	0,005	0,002	0,001

Таблица 8 Повторяемость высот и периодов волн на Охотском море, %

τ , c	$h_{3\%}$. M														
	0-1	1–2	2–3	3–4	4–5	5–6	6–7	7–8	8–9	9–10	10-11	11–12	12-13	13–14	14–15
0 – 1	0,15														
1–2	1,32														
2 – 3	1,46	1,70													
3 – 4	6,26	7,54	4,88												
4 – 5	5,54	7,22	3,99	3,56											
5 – 6	3,88	6,82	3,82	2,52	1,24										
6 – 7	0,85	5,41	2,50	1,28	0,77	0,55									
7 – 8	0,24	3,96	2,38	0,60	0,58	0,51	0,34	0,07							
8 – 9	0,12	2,48	2,32	0,45	0,26	0,22	0,11	0,14	0,05						
9–10	0,09	1,39	1,75	0,21	0,17	0,15	0,10	0,09	0,07	0,06	0,04	0,02	0,006	0,006	
10-11	0,03	1,11	1,10	0,17	0,15	0,12	0,09	0,07	0,04	0,03	0,03	0,02	0,005	0,004	0,003
11–12	0,02	0,47	0,97	0,11	0,08	0,06	0,04	0,03	0,02	0,02	0,02	0,01	0,004	0,003	0,002
12-13	0,01	0,03	0,64	0,03	0,02	0,02	0,01	0,01	0,01	0,006	0,002	0,001	0,001	0,001	0,001
13-14	0,006	0,02	0,08	0,02	0,01	0,01	0,009	0,005	0,005	0,002	0,001	0,001	0,001	0,001	0,001
14-15	0,004	0,01	0,007	0,005	0,003	0,003	0,002	0,002	0,002	0,002	0,001	<0,001	<0,001	<0,001	<0,001
15–16	0,002	0,002	0,003	0,003	0,001	0,001	0,001	0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001
16–17	0,001	0,001	0,002	0,002	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001

Таблица 9 Повторяемость высот волн и скоростей ветра на Охотском море. %

	повторяемоств высот воли и скоростей ветра на охотском море, 70														
\overline{W} , м/с		$h_{3\%}$. М													
	0–1	1–2	2–3	3–4	4–5	5–6				9-10	10–11	11–12	12-13	13–14	14–15
2 – 4	3,60	13,20	2,12	0,92	0,11	0,03	0,01	0,008	0,002	0,001	0,001	0,001			
4 – 6	8,12	6,27	2,26	1,17	0,13	0,06	0,02	0,01	0,002	0,001	0,001	0,001			
6 – 8	5,00	6,43	3,69	2,41	0,31	0,08	0,05	0,02	0,005	0,003	0,003	0,001	0,001		
8–10	2,96	7,98	3,06	1,71	1,01	0,16	0,05	0,03	0,01	0,006	0,005	0,002	0,001		
10–12	0,16	7,86	2,69	1,20	0,63	0,24	0,10	0,05	0,03	0,02	0,01	0,005	0,001		
12–14	0,14	5,18	2,34	1,03	0,55	0,42	0,14	0,11	0,03	0,02	0,02	0,005	0,001	0,001	
14–16	<0,001	1,27	1,49	0,71	0,54	0,51	0,18	0,17	0,04	0,03	0,03	0,01	0,003	0,001	0,001
16–18	<0,001	0,01	0,69	0,36	0,31	0,25	0,21	0,04	0,04	0,04	0,002	0,01	0,004	0,002	0,001
18 – 20	<0,001	0,01	0,61	0,25	0,17	0,11	0,08	0,02	0,02	0,02	0,01	0,005	0,003	0,002	0,001
20 – 22	<0,001	<0,001	0,56	0,03	0,14	0,08	0,04	0,02	0,01	0,009	0,008	0,005	0,004	0,003	0,002
22 - 24	<0,001	<0,001	0,15	0,02	0,10	0,06	0,02	0,01	0,008	0,006	0,007	0,003	0,003	0,001	0,001
24 – 26	<0,001	<0,001	<0,001	<0,001	<0,001	< 0,001	0,01	0,01	0,007	0,004	0,004	0,003	0,002	0,001	0,001

ПРИЛОЖЕНИЕ 2

ТРЕБОВАНИЯ К РАСЧЕТНЫМ МОДЕЛЯМ, БАЗИРУЮЩИМСЯ НА МЕТОДЕ КОНЕЧНЫХ ЭЛЕМЕНТОВ

1 ОБЩИЕ ТРЕБОВАНИЯ

1.1 В общем случае расчет конструкции методом конечных элементов состоит из следующих этапов:

определение типа и размера задачи;

составление конечно-элементной модели конструкции и граничных условий; моделирование нагрузок;

оценка корректности модели и выполнение расчета;

представление полученных результатов.

1.2 При моделировании конструкции, граничных условий и нагрузки, в зависимости от целей расчета и типа конструкции, возможны и необходимы определенные допущения и упрощения. Конкретные возможности расчета определяются параметрами программного обеспечения и вычислительной техники, а также предусмотренным размером задачи. По мере накопления информации об особенностях работы конструкции размер задачи может изменяться.

2 ОПРЕДЕЛЕНИЕ ТИПА И РАЗМЕРА РАСЧЕТНОЙ МОДЕЛИ

- **2.1** Следует определить тип напряженно-деформированного состояния и размер задачи, поскольку от этого зависит моделирование конструкции, граничных условий и нагрузки.
- **2.2** В конструкциях ПБУ деформации и напряжения подразделяются на следующие типы в зависимости от внешних нагрузок и условий работы конструкции:

общие деформации и напряжения конструкции ПБУ;

местные деформации и напряжения конструктивных элементов;

концентрационные напряжения и деформации в локальных зонах конструкции и прерывистых связях.

- **2.3** Задача расчета и способ моделирования нагрузки должны соответствовать одному из перечисленных выше типов напряженно-деформированного состояния конструкции.
- **2.4** Размер задачи и тем самым размер расчетной модели определяются выбранными границами модели и необходимыми размерами сетки конечных элементов.
- 2.5 Характер задачи линейный или нелинейный зависит от особенностей конструкции и величины деформаций. Если параметры напряженно-деформированного состояния конструкции определены при регламентируемых расчетных нагрузках, обычно достаточно линейного расчета, особенно в случае толстостенных конструкций. Нелинейные эффекты вызываются свойствами материала, большими деформациями и имеют существенное значение в следующих случаях:

для относительно гибких конструкций с большими деформациями (геометрическая нелинейность);

при исследовании частичного отказа элементов конструкции, например, потеря устойчивости плоских панелей;

если встречаются пластические деформации в областях конструкции (физическая нелинейность).

3 МОДЕЛИРОВАНИЕ КОНСТРУКЦИИ

3.1 Выбор типов расчетных моделей.

3.1.1 В расчетах прочности конструкций ПБУ рекомендуется применять следующие типы расчетных моделей:

общая модель корпуса ПБУ;

модель корпусной конструкции или крупной составляющей корпуса;

модель перекрытия;

рамная модель;

локальные модели.

- **3.1.2** Для всех моделей, кроме общей модели корпуса, следует обеспечить введение граничных условий для корректного удовлетворения условиям взаимодействия со смежными конструкциями. Если есть опасение, что на результатах могут сказаться неблагоприятным образом идеализированные граничные условия, следует увеличить расстояние между границами модели и рассматриваемой областью конструкции.
- **3.1.3** Общую модель корпуса следует использовать для определения общих напряжений в конструкции ПБУ. Трехмерное моделирование основных связей корпуса позволяет обеспечить приложение нагрузок в виде, наиболее приближенном к реальному, моделировать с высокой точностью поведение сложных конструкций корпуса.
- **3.1.4** Модель корпусной конструкции или крупной составляющей корпуса (обычно трехмерная модель) следует использовать для определения общих напряжений в рассматриваемой части корпуса.
- 3.1.5 Модель перекрытия следует использовать для определения общих или местных напряжений в плоских конструкциях, образованных пластинами обшивки, подкрепленными с одной или с обеих сторон ребрами жесткости и/или стенками (перекрытия типа двойного дна, переборки, палубы), а также для расчета передачи поперечной нагрузки на опорный контур перекрытия и оценки возникающих при этом деформации и напряжений.
- **3.1.6** Рамную модель следует использовать при расчете прочности конструкций, деформируемых (главным образом, изгибаемых) в своей плоскости, например, поперечных связей понтона ПБУ.
- **3.1.7** Локальные модели рекомендуется использовать в расчетах прочности отдельных элементов конструкции и для определения концентрационных напряжений в деталях конструкций и прерывистых связей.
 - 3.2 Выбор типа конечных элементов.
- **3.2.1** Тип конечного элемента, принятый при выполнении расчета прочности каждой конкретной задачи, имеет определяющее значение, поэтому при выборе элемента следует руководствоваться нижеприведенными рекомендациями.
- **3.2.2** В расчетах прочности конструкций рекомендуется использовать следующие типы элементов:

стержневые элементы (одномерные элементы с осевой жесткостью, но без изгибной жесткости);

балочные элементы (одномерные элементы с осевой, сдвиговой, изгибной и крутильной жесткостью);

элементы плоского напряженного состояния (двумерные элементы с мембранной жесткостью в плоскости пластины, но без изгибной жесткости относительно осей, лежащих в плоскости пластины);

элементы пластины и оболочки (двумерные элементы с мембранной, изгибной и крутильной жесткостью);

объемные элементы (трехмерные элементы);

граничные и пружинные элементы.

При использовании элементов различных типов следует уделять внимание совместности перемещений и возможности передачи граничных нагрузок и напряжений, особенно при соединении в узлах элементов с изгибной жесткостью и без таковой.

- **3.2.3** Выбранные типы элементов должны отражать деформации и напряжения для анализируемых случаев загрузки, а при необходимости, собственные значения или предельные состояния при определении величины предельной нагрузки.
- 3.2.4 Следует определить, в какой степени в данном конкретном расчете прочности должен рассматриваться изгиб компонентов конструкции. В случаях чисто изгибного поведения в соответствии с теорией изгиба балок или теорией изгиба пластины, особенно для плоских панелей, ребер жесткости, перекрытий и поперечных рам, подходят балочные элементы и элементы пластины. Если используются элементы плоского напряженного состояния или объемные элементы, то для возможности учета изгиба в плоскости наибольшей жесткости следует выбрать конечные элементы с дополнительными промежуточными узлами или применять более мелкую сетку.
- **3.2.5** Для трехмерных моделей можно ограничиться элементами плоского напряженного состояния, если определяются только общие деформации и напряжения. В этом случае учитывается только мембранная жесткость моделируемой плоской конструкции.
- **3.2.6** Второстепенные конструктивные связи, например, подкрепляющие пластину ребра жесткости, учитываются с той или иной степенью условности, которая определяется вкладом этих связей в анализируемое напряженно-деформированное состояние.
- 3.2.7 Если изгиб связи в рассматриваемом случае важен, то следует точнее моделировать ее изгибную жесткость (например, стенка моделируется плоскими элементами, а свободный поясок стержневым или пластинчатым элементом). В некоторых случаях изгибную жесткость следует учитывать дополнительными балочными элементами.
- **3.2.8** В других случаях ребра жесткости можно учитывать условно в виде дополнительной толщины пластин. Поскольку обобщенная жесткость подкрепленной пластины в зависимости от ориентации подкрепляющих ребер жесткости различна во взаимно ортогональных направлениях, в расчетных моделях это учитывается введением ортотропных свойств пластины приведенной толщины:

$$E_2 = E_1(F_{nl} + F_{st})/F_{nl}; (3.2.8)$$

 $E_1 = E$,

где

 $\it E$ — исходный модуль нормальной упругости материала пластины;

 $E_1 - {\sf Modynb}$ упругости в направлении, ортогональном к ориентации ребер жесткости;

 E_2 — модуль упругости в направлении, параллельном к ориентации ребер жесткости;

 F_{pl} — площадь поперечного сечения пластины;

 F_{st} – площадь поперечного сечения ребра жесткости.

- **3.2.9** В локальных моделях все жесткостные компоненты, в том числе и вторичные, имеют существенное значение, поэтому используются конечные элементы пластины, оболочки и объемные элементы. Исключение могут составлять плоские конструкции, загруженные в своей плоскости. Например, при анализе концентрационных напряжений на кромках вырезов они моделируются пластинами плоского напряженного состояния.
- **3.2.10** Для получения информации о деформациях между двумя узлами, например, на свободных кромках пластины, следует вводить стержневые элементы

с пренебрежимо малым поперечным сечением. Одноосные напряжения такого элемента показывают напряжения по кромке.

- 3.3 Разбивка на конечные элементы.
- **3.3.1** Размер сетки конечных элементов определяется характеристиками конечных элементов и должен выбираться из условия достаточной точности при моделировании:

жесткостных параметров конструкции;

типа исследуемых напряжений;

возможных форм отказа.

При выборе размеров сетки конечных элементов следует руководствоваться нижеприведенными рекомендациями.

- **3.3.2** При выборе сетки конечных элементов в наибольшей степени должны учитываться геометрия конструкции, расположение и характер нагрузки, размещение опор.
- 3.3.3 Трехмерные модели конструкции в целом или части конструкции могут иметь достаточно грубую идеализацию, в качестве характерного размера конечного элемента могут приниматься шпации основных компонентов конструкции. Это допустимо в расчетах общего напряженного состояния при условии, что изгибное поведение основных компонентов конструкции с достаточной точностью отражено выбранным типом конечного элемента. То же относится к моделям перекрытий и моделям для расчета местной прочности ребер жесткости, если ширина элементов в пластинах обшивки равна шпации ребер жесткости или ее половине.
- **3.3.4** Характеристики элемента и его размеры должны быть выбраны так, чтобы жесткость, результирующие деформации и напряжения корректно отражали поведение конструкции. Для простых конечных элементов отношение размеров сторон элемента, как правило, не должно превосходить трех.
- **3.3.5** При вычислении локальных концентрационных напряжений размер сетки конечных элементов должен изменяться постепенно в соответствии с ожидаемым градиентом напряжений.
 - 3.4 Ввод упрощающих допущений.
- **3.4.1** Вследствие сложности конструкции ПБУ при моделировании следует вводить допущения, направленные на упрощения. Упрощения допустимы, если они не приводят к значительным погрешностям в результатах.
- **3.4.2** Типичным упрощением в расчетах общей прочности является объединение нескольких компонентов конструкции в один. Можно объединять ребра жесткости или балки. Объединенные компоненты должны обладать эквивалентной жесткостью и располагаться в геометрическом центре составляющих компонентов.
- **3.4.3** Малые компоненты и детали, которые характеризуют жесткость небольших участков, могут вовсе не учитываться при моделировании. Примером таких компонентов и деталей для расчета общей прочности являются малые вырезы, бракеты в рамах, подкрепляющие ребра жесткости, подкрепления, препятствующие потере устойчивости.
- **3.4.4** Большие вырезы (вырезы для доступа во внутренние помещения, окна и двери) всегда должны учитываться. При грубой сетке конечных элементов такие вырезы учитываются путем уменьшения жесткости за счет уменьшения толщины элементов или за счет уменьшения модуля сдвига и модуля нормальной упругости в продольном и поперечном направлениях.
- **3.4.5** Плоские элементы должны располагаться в срединной поверхности соответствующих компонентов конструкции. Для анализа общей прочности тонкостенных конструкций элементы как приближение могут располагаться по линиям наружной поверхности.

- **3.4.6** Плоские двумерные элементы в наклонных или искривленных поверхностях должны, как правило, помещаться в геометрическом центре моделируемой области, чтобы с большей точностью отражать общие жесткостные характеристики.
 - 3.5 Граничные условия и закрепления.
 - **3.5.1** Задание граничных условий и закреплений предназначено для: исключения перемещений и поворотов модели как жесткого целого; учета в расчетной модели реально существующих опор и закреплений;

учета взаимодействия модели части конструкции по ее границам со смежными частями.

Кинематические граничные условия и закрепления вводятся путем задания предписанных значений по перемещениям и углам поворота в узловых точках расчетной модели. При введении закреплений следует избегать появления в модели несуществующих в реальном поведении конструкции ограничений в перемещениях и углах поворота.

- 3.5.2 Исключение перемещений и поворотов модели как жесткого тела (программы МКЭ не обеспечивают автоматического исключения таких перемещений) следует проводить с помощью введения опор или закреплений в различных сечениях модели. Реакции в этих опорах и закреплениях, которые отсутствуют в реальных конструкциях, следует сводить к минимуму с помощью нагружения модели самоуравновешенной системой нагрузок. Перемещения и повороты твердого тела можно исключать введением в расчетную модель распределенного упругого основания с помощью пружинных элементов, что, например, может близко соответствовать реальным условиям плавания корпуса ПБУ в воде.
- **3.5.3** Реально существующие опоры, которые воспринимают силы и моменты, должны моделироваться с высокой степенью приближения к реальным условиям.
- Взаимодействие частей корпусных конструкций конструкциями по границам модели должно моделироваться с возможно высокой степенью приближения к реальности. Следует учитывать симметрию конструкции и разрабатывать модель только для симметричной ее части. По плоскостям симметрии вводятся условия симметричной или антисимметричной деформации, а нагрузка раскладывается на симметричную И антисимметричную составляющие. Взаимодействие по границе должно учитываться соответствующим заданием напряжений, сил и моментов. Эти величины получают как результат расчета конструкций по общей модели.
- **3.5.5** При использовании некоторых типов элементов может возникнуть необходимость, вследствие несуществующей жесткости, в подавлении степеней свободы в узлах. При этом нельзя допускать ограничения реальных деформаций. Если при подавлении степеней свободы элементы дают дополнительную жесткость, их размеры должны быть выбраны так, чтобы обеспечить жесткость, корректно отражающую реальное поведение.

101

4 МОДЕЛИРОВАНИЕ НАГРУЗОК

- **4.1** Нагрузки должны моделироваться с высокой степенью приближения к реальности. При необходимости моделирование конструкции должно быть приспособлено к моделированию нагрузки.
- **4.2** Распределенные нагрузки в процессе вычислений конвертируются в эквивалентные узловые силы и в узловые моменты в соответствии с используемым типом конечного элемента.
- **4.3** Если деформации по границе локальной модели получены из расчета по общей модели конструкции с грубой сеткой, то следует использовать соответствующую интерполяцию деформации для промежуточных узлов локальной модели. Кроме того, должны прикладываться соответствующие нагрузки, действующие в пределах локальной области конструкции.

5 ОЦЕНКА ДОСТОВЕРНОСТИ РЕЗУЛЬТАТОВ

5.1 Результаты следует проверить на достоверность. Такая проверка включает:

специальное визуальное представление деформаций для оценки соответствия их распределения приложенным нагрузкам, граничным условиям, опорам и закреплениям; контроль принадлежности полученных значений деформаций ожидаемому диапазону.

- **5.2** Следует проверить, соответствуют ли величины сил и моментов на опорах ожидаемым значениям. Для случая самоуравновешенных нагрузок необходимо проверить, достаточно ли малы реактивные усилия, чтобы ими можно было бы пренебречь.
- **5.3** Для локальных моделей с заданными деформациями на границе, полученными из общих моделей конструкций, необходимо проверить взаимное соответствие напряжения вблизи рассматриваемых границ для двух моделей.
- **5.4** Для нелинейных вычислений необходимо проверить точность решения в нелинейной зоне.

Российский морской регистр судоходства

Правила классификации и постройки плавучих буровых установок Часть II Корпус

ФАУ «Российский морской регистр судоходства» 191186, Санкт-Петербург, Дворцовая набережная, 8 www.rs-class.org/ru/