RULES
FOR THE OIL-AND-GAS EQUIPMENT
OF FLOATING OFFSHORE OIL-AND-GAS
PRODUCTION UNITS,
MOBILE OFFSHORE DRILLING UNITS
AND FIXED OFFSHORE PLATFORMS

ND No. 2-090601-008-E

Saint-Petersburg
Edition 2021
The Rules for the Oil-and-Gas Equipment of Floating Offshore Oil-and-Gas Production Units, Mobile Offshore Drilling Units and Fixed Offshore Platforms (OGE Rules) have been approved in accordance with the established approval procedure and come into force on 1 January 2021.

The present edition is based on the 2017 edition of the OGE Rules taking into account the amendments developed immediately before publication.
<table>
<thead>
<tr>
<th>Amended paras/chapters/sections</th>
<th>Information on amendments</th>
<th>Number and date of the Circular Letter</th>
<th>Entry-into-force date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part I, para 6.3.1</td>
<td>Amendments have been introduced to the wordings of descriptive notations in the FPU/MODU/FOP class notation considering modern approach to the project design of offshore oil-and-gas fields</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 6.3.2</td>
<td>Amendments have been introduced to the wordings of descriptive notations in the FPU/MODU/FOP class notation considering modern approach to the project design of offshore oil-and-gas fields</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, Section 7</td>
<td>Section has been completely revised</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, Table 7.1</td>
<td>Amendments have been introduced in compliance with the current RS normative documents</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 8.1.5</td>
<td>Reference has been specified</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 8.1.6</td>
<td>Amendments have been introduced in compliance with the current RS normative documents</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 8.1.7</td>
<td>Amendments have been introduced in compliance with the current RS normative documents</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 8.1.11</td>
<td>Reference has been specified</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, Chapter 8.2</td>
<td>Chapter has been renamed</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, paras 8.2.5 — 8.2.7</td>
<td>New para 8.2.5 has been introduced related to the issue of documents at single approval of oil-and-gas equipment. Existing paras 8.2.5 and 8.2.6 have been renumbered 8.2.6 and 8.2.7 accordingly</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 8.2.8</td>
<td>A new para has been introduced containing requirements to the type approval of materials, products and production processes</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 8.3.1</td>
<td>Amendments have been introduced in compliance with the current RS normative documents</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 8.3.2</td>
<td>Para has been deleted</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 8.3.3</td>
<td>Para has been deleted</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, paras 8.3.4 — 8.3.7</td>
<td>Paras have been renumbered 8.3.2 — 8.3.5 accordingly</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 8.3.8</td>
<td>Para has been deleted</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 8.4.3</td>
<td>Reference has been specified</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 8.4.6</td>
<td>Reference has been specified</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, Chapter 8.5</td>
<td>A new Chapter has been introduced containing requirements to the audit of firms</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 9.1.3.5</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, Table 10.2.7</td>
<td>Amendments have been introduced in compliance with the current RS normative documents</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part I, para 10.2.8.3</td>
<td>Amendment has been introduced considering experience in application of the Rules</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
</tbody>
</table>

\(^{1}\)As compared to the version of 07.12.2016 of the 2017 edition.
<table>
<thead>
<tr>
<th>Amended paras/chapters/sections</th>
<th>Information on amendments</th>
<th>Number and date of the Circular Letter</th>
<th>Entry-into-force date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part II, para 1.3.3</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part II, para 2.1.1.1</td>
<td>Requirements have been specified to design of the drilling derricks, derrick substructures and support frames of FPU/MODU/FOP</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part II, para 2.1.1.2</td>
<td>Requirement has been specified to design of the drilling derricks, derrick substructures and support frames of FPU/MODU</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part II, para 2.1.1.3</td>
<td>Requirement has been specified to design of the drilling derricks, derrick substructures and support frames of FPU/MODU/FOP</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part II, para 2.1.1.4</td>
<td>Requirement has been specified to design of the drilling derricks, derrick substructures and support frames of FPU/MODU/FOP</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part II, para 2.1.2.1</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part II, para 2.2.1</td>
<td>Requirement has been specified to design of the derrick substructure of FPU/MODU/FOP</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part II, Chapters 2.3 — 2.14</td>
<td>New Chapter 2.3 has been introduced containing requirements to design of the support frames of FPU/MODU/FOP. Existing Chapters 2.3 — 2.13 have been renumbered 2.4 — 2.14 accordingly</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part II, paras 2.14.3.6 and 2.14.3.7</td>
<td>A new para 2.14.3.6 has been introduced containing requirements to the auxiliary systems of FPU/MODU/FOP. Existing para 2.14.3.6 has been renumbered 2.14.3.7</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part III, paras 2.6.4 — 2.6.17</td>
<td>Requirements have been specified to the pressure release and gas withdrawal systems of FPU/MODU/FOP. Paras have been renumbered 2.6.4 — 2.6.17 accordingly</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part III, para 2.7.11</td>
<td>Requirements have been specified to the pressure release and gas withdrawal systems of FPU/MODU/FOP (for Russian version only)</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part III, Chapter 2.14</td>
<td>New Chapter has been introduced containing requirements to the auxiliary systems and equipment of FPU/MODU/FOP</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, para 2.2.1.3</td>
<td>Requirements have been specified to the chemical composition of steel (for Russian version only)</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, para 2.2.1.4</td>
<td>Para has been deleted</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, paras 2.2.1.5 — 2.2.1.8</td>
<td>Paras have been renumbered 2.2.1.4 — 2.2.1.7 accordingly</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, para 2.2.1.5</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, para 2.4.3</td>
<td>Requirements have been specified to the shut-off pipe fittings considering leak-tightness standards and classes</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, para 2.4.14</td>
<td>A new para has been introduced containing requirements to the piping and valves used at a working temperature from 0 to – 165 ºC</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, para 2.7.2.1.4</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, para 2.7.2.2.4</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, para 2.7.2.2.6</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, para 2.7.4.4</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Amended paras/chapters/sections</td>
<td>Information on amendments</td>
<td>Number and date of the Circular Letter</td>
<td>Entry-into-force date</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---------------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Part V, para 2.7.4.5</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, para 3.3.3</td>
<td>Requirements have been specified to the pipelines of gas withdrawal systems</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, para 3.4.4</td>
<td>A new para has been introduced containing requirements to provision of the identical internal diameter throughout the piping system</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, para 3.4.5</td>
<td>A new para has been introduced containing requirements to the electrical insulating joints</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part V, Chapter 3.5</td>
<td>A new Chapter has been introduced containing requirements to the hose stations for reception/delivery of fluids and free-flowing materials on FPU/MODU/FOP</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VI, para 1.2.2</td>
<td>Para has been deleted</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VI, paras 3.3.3 — 3.3.6</td>
<td>Para 3.3.3 has been deleted. Paras 3.3.4 — 3.3.6 have been renumbered 3.3.3 — 3.3.5 accordingly</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VI, Chapter 3.4</td>
<td>A new Chapter has been introduced containing requirements to the well logging hoists</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VII, para 1.2</td>
<td>Application of requirements of the Rules to the thermal fluid boilers, pressure vessels for compressed air and inert gases (nitrogen) has been specified</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VII, para 2.2</td>
<td>Para has been deleted</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VII, paras 2.3 — 2.5</td>
<td>Paras have been renumbered 2.2 — 2.4 accordingly</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VII, Section 3</td>
<td>Section has been renamed</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VII, para 3.1.1.3</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VII, para 3.1.2.2</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VII, para 3.2.1.1</td>
<td>Para has been deleted</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VII, para 3.2.1.2</td>
<td>Para has been renumbered 3.2.1.1</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VII, para 3.2.2.3</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VII, para 3.2.2.5</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VIII, para 1.2.4</td>
<td>Requirements have been specified to the materials and products used for manufacture of the pipelines of systems, heat exchangers and pressure vessels</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VIII, para 1.2.5</td>
<td>Para has been deleted</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part VIII, paras 1.2.6 — 1.2.12</td>
<td>Paras have been renumbered 1.2.5 — 1.2.11 accordingly</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part IX, para 1.1.4</td>
<td>Para has been deleted (for Russian version only)</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part IX, para 1.1.5</td>
<td>Para has been deleted (for Russian version only)</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part IX, para 2.2.6</td>
<td>Requirements have been specified to the activation of alarm and start of emergency exhaust ventilation</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part IX, para 2.19.1</td>
<td>Requirements have been specified to the emergency shutdown of the welding equipment</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part X, para 1.2.8</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Amended paras/chapters/sections</td>
<td>Information on amendments</td>
<td>Number and date of the Circular Letter</td>
<td>Entry-into-force date</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------</td>
<td>---------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Part X, para 4.3.1.2</td>
<td>Amendment has been introduced to delete obscure wording</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Part X, Table 4.3.1.4</td>
<td>Probability value for well blowouts has been specified</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>List of Normative and Technical Documents has been specified</td>
<td>—</td>
<td>01.01.2021</td>
</tr>
</tbody>
</table>
PART I. GENERAL REGULATIONS FOR TECHNICAL SUPERVISION

1 DEFINITIONS AND ABBREVIATIONS

Terms, definitions and explanations relating to the general terminology used in the normative documents of Russian Maritime Register of Shipping\(^1\) are given in Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.

For the purpose of the present Rules for the Oil-and-Gas Equipment of Floating Offshore Oil-and-Gas Production Units, Mobile Offshore Drilling Units and Fixed Offshore Platforms\(^2\), the definitions given in 1.2, Part I "Classification" of the Rules for the Classification, Construction and Equipment of Mobile Offshore Drilling Units and Fixed Offshore Platforms\(^3\), in 1.2, Part I "Classification" of the Rules for the Classification, Construction and Equipment of Floating Offshore Oil-and-Gas Production Units\(^4\) and the following definitions and abbreviations (unless expressly provided otherwise in particular parts of the OGE Rules) have been adopted.

1.1 TERMS AND DEFINITIONS

Block-and-tackle system is the load-carrying component of a drilling unit in the form of a tackle consisting of a fixed crownblock, and a travelling block with a deadline anchor.

Blowout equipment is a system of equipment designed for oil and gas wellhead sealing during well construction or repairs in order to provide safe work performance, prevent blowouts and oil spouters, conserve mineral resources and protect the environment. Blowout equipment includes preventers, manifolds and monitoring and control system.

Blowout preventer (BOP) is a device for sealing the wellhead during construction (drilling) or various operations to prevent uncontrolled fluid blowouts.

Control system of blowout equipment is a system intended to provide the remote control of the preventer hydraulic drives and hydraulic fittings.

Customer is a direct user of the Register services or products, which are under the Register technical supervision or subject to the Register inspections during their design, manufacture, application and utilization.

Discharge pipeline (flowline) is piping, which directs well fluids from wellheads to a manifold, riser or the first process vessel.

Drawworks is a winch designed to provide a set load on a rock destruction tool, to feed a drill string on the bottom of the well being drilled out, to trip the drill string when making a connection, changing the rock destruction tool and downhole motors, to extract the core, to run in a casing string during well casing and cementing, and also to trip various equipment when carrying out control, instrumentation and workover.

Drilling derrick is a metallic structure over a wellhead used for installation of a block-and-tackle system, top drive, gear kit for round-trip operation and setting of drill pipe stands.

Drilling instrument is a drill string comprising drill pipes, drill collars and its tooling components, a downhole drill stem assembly and rock destruction tool.

\(^1\)Hereinafter — the Register, RS.
\(^2\)Hereinafter — the OGE Rules.
\(^3\)Hereinafter — the MODU/FOP Rules.
\(^4\)Hereinafter — the FPU Rules.
Drilling rig is a system of machines, machinery, equipment and structures, which provides performance of technological operations on well construction with the use of a drilling instrument.

Drilling swivel is an arrangement for holding suspended a rotating drilling instrument with simultaneous admission of flushing fluid into the string during drilling and flushing out of the well. The swivel consists of two groups of components, one is non-rotating and connected to a block-and-tackle system and another is rotating and connected to a drill pipe string.

Fluid is gas, vapour, liquid or their mixture transferred via piping systems of oil-and-gas equipment (fluid).

Gear kit for round-trip operation is a set of machinery located on a drilling derrick and drilling floor, which includes an automatic elevator, a mechanism for stand catching, raising and setting, racks and setbacks. It is designed for mechanization of making-and-breaking the pipes, setting and extending the stands during the round-trip operations.

Hazardous production facility is works or their shops, sections, areas and also other production facilities specified in Appendix 1 to Federal Law No. 116-FZ "On Industrial Safety of Hazardous Production Facilities".

Industrial safety of hazardous production facilities is a security of individual and social vital interests against the accidents at hazardous production facilities and their consequences.

Manifold is a piping system with the required shut-off, regulating and safety fittings, which is arranged in such a way that the fluid from one or more sources may be selectively directed to various process systems.

Oil-and-gas equipment is the equipment designed for drilling, production, gathering, field development and transportation of hydrocarbons.

Pressure pipeline is a producing/injection line, booster pipeline or piping via which a fluid under overpressure is transferred.

Process system (technological complex) is a system of oil-and-gas equipment for production, gathering, treatment and transportation of fluids.

Recognized standard is a standard or another normative and technical document, which is recognized by the Register as acceptable for application to provide the confirmation of compliance with the requirements stipulated in the contract specification/technical specifications by a customer and meets the requirements of the Register rules.

Swivel is a link between two machinery parts (or chain links), allowing each of them to rotate around its axis and providing transfer of liquids and gases, as well as power resources (electric, hydraulic, pneumatic), signals of the automatic process control system, etc.

Technical maintenance is a set of operations or an operation for maintenance of the product (equipment) operability during intended use, storage and transportation.

Top drive is a movable rotary mechanism fitted with a set of equipment and arrangements for round-trip operation and designed for rotation and making a connection during drilling, for making-and-breaking of the drill and casing pipes during round-trip operations, and for admission of flushing fluid into a drill string.

Treatment (preliminary processing) is the well fluid treatment performed to remove impurities and impart the property to the well fluids required for the following safe storage, transportation and application, as well as the separation of individual components and fractions.

Tripping complex is a complex, which includes a drawworks, rigging system, gear kit for round-trip operation and is designed for tripping and holding suspended a drill string, casing pipes and instrument during well construction.
1.2 ABBREVIATIONS

ATEX system — international certification system, following the ATEX (ATmosphères EXplosibles) directive.
BOP — blowout preventer.
ESD system — emergency shutdown system.
EU — European Union.
FMEA — Failure Mode and Effects Analysis.
FOP — fixed offshore platform.
FPU — floating offshore oil-and-gas production unit.
GOST (standards) — standards administered by the Euro-Asian Council for Standardization, Metrology and Certification.
HAZID study — Hazard Identification study.
HAZOP study — Hazard and Operability study.
HSE — Health and Safety Executive (organization).
LFL — lower flame limit.
MODU — mobile offshore drilling unit.
OGP — the International Association of Oil and Gas Producers.
QAR — quantitative assessment of risk.
QRA method — quantitative risk assessment method.
RHO — Register Head Office.
RS, the Register — Russian Maritime Register of Shipping.
RF — the Russian Federation.
SCSSV — surface controlled subsurface safety valve.
Other abbreviations, most frequently used in international practice, are listed in Appendix 1.
2 APPLICATION

2.1 GENERAL

2.1.1 The requirements of the OGE Rules apply to the oil-and-gas equipment installed on floating or fixed offshore oil-and-gas structures: floating offshore oil-and-gas production units (FPU), mobile offshore drilling units (MODU), fixed offshore platforms (FOP), and also on drilling vessels (hereinafter all together — the FPU/MODU/FOP).

2.1.2 The OGE Rules have been developed in addition to the MODU/FOP Rules and the FPU Rules.

2.1.3 The requirements of the OGE Rules refer to the following: list of documentation for oil-and-gas equipment at review of the FPU/MODU/FOP designs; classification of FPU/MODU/FOP to confirm the compliance of their oil-and-gas equipment; list of the nomenclature of items and the procedures for the Register technical supervision of the oil-and-gas equipment; systems and equipment for well drilling; systems and equipment for production, gathering, treatment and transportation of well fluids; functional components of oil-and-gas equipment and safety assessment of FPU/MODU/FOP during operation of oil-and-gas equipment.

2.1.4 The OGE Rules apply during design, manufacture, operation and confirmation of compliance of FPU/MODU/FOP with regard to the set level of oil-and-gas equipment safety, prevention of environment pollution when performing operations on drilling, production, gathering, treatment and transportation of well fluids, as well as assessment of risks of the relevant critical events. Process features of the above operations are not considered in the OGE Rules.

2.1.5 The OGE Rules establish additional descriptive notations in the FPU/MODU/FOP class notation, which may be assigned to these objects if their oil-and-gas equipment complies with the requirements of the Rules.

2.1.6 The OGE Rules may be used by all the organizations and manufacturers, which activities are associated with the FPU/MODU/FOP design and construction, exploration, construction and development of hydrocarbon fields on the continental shelf irrespective of their departmental affiliation and form of ownership. In case the manufacturer or organization has decided to apply the OGE Rules on a voluntary basis, all the requirements of the OGE Rules shall be met mandatorily.

2.1.7 The OGE Rules may be applied to the FPU/MODU/FOP oil-and-gas equipment manufactured without the Register technical supervision with regard to the given equipment for the purpose of survey, confirmation of compliance and technical supervision of given equipment in service.

2.1.8 The FPU/MODU/FOP oil-and-gas equipment manufactured and installed according to other rules and standards may be approved by the Register in case the data is provided confirming that they are as efficient as required by the OGE Rules.
2.2 REQUIREMENTS OF NATIONAL SUPERVISORY BODIES

2.2.1 The fulfilment of the requirements of the OGE Rules does not discharge of a liability of meeting the requirements of the national supervisory bodies for the oil-and-gas equipment used for the drilling, processing, production and transportation of hydrocarbons on the sea shelf, including the equipment installed on FPU/MODU/FOP, at the stages of design, manufacture, confirmation of compliance, mounting, welding, testing and operation of this equipment.

2.2.2 The OGE Rules take into account the regulatory requirements of the following documents:
.1 federal legislation:
Federal Law No. 116-FZ "On Industrial Safety of Hazardous Production Projects" of July 21, 1997, as amended,
Federal Law No. 184-FZ "On Technical Regulation" of 27 December, 2002, as amended,
.2 normative and technical documents of the RF executive authority, which carries out supervision of industrial safety (Rostekhnadzor).
3 TECHNICAL SUPERVISION

3.1 GENERAL REQUIREMENTS

3.1.1 The technical supervision of the FPU/MODU/FOP oil-and-gas equipment includes verification of its conformity to the Register requirements:
- during review and approval (agreement) of technical documentation;
- survey of items of technical supervision at the stages of manufacture, mounting, service, as well as modernization and repairs.

3.1.2 The Register activities during review of technical documentation for technical supervision during manufacture, mounting and operation of oil-and-gas equipment are carried out on the basis of contracts.

3.1.3 The items of the Register technical supervision and the technical requirements thereto are determined by the OGE Rules and listed in the Nomenclature of Items of the Register Technical Supervision of the FPU/MODU/FOP Oil-and-Gas Equipment (hereinafter — the Nomenclature) (refer to Section 7). The Nomenclature omits the items relating to oil-and-gas equipment components and previously included in the Nomenclature of Items of the Register Technical Supervision of Sea-Going Ships, FPU/MODU/FOP as the items, which provide the FPU/MODU/FOP navigation safety, safety of human life and prevention of marine environment pollution (refer to Appendix I, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships).

3.1.4 During technical supervision of oil-and-gas equipment, the Register may permit the use of normative and technical documents of foreign classification societies, other recognized national and international rules and standards.

3.1.5 Manufacture of oil-and-gas equipment and its mounting shall be carried out in compliance with the technical documentation approved by (agreed with) the Register.

3.1.6 In other respects the general regulations for technical supervision of the FPU/MODU/FOP oil-and-gas equipment shall comply with the requirements of Section 2, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.
3.2 SERVICES RENDERED DURING TECHNICAL SUPERVISION

3.2.1 During technical supervision of the FPU/MODU/FOP oil-and-gas equipment the Register performs:
- review of technical documentation (refer to Section 5) and provides a conclusion on the possible introduction of additional descriptive notations in the FPU/MODU/FOP class notation, which confirm the compliance of their oil-and-gas equipment with the requirements of the OGE Rules (refer to Section 6);
- approval of single types of oil-and-gas equipment with issue of a Certificate of Conformity (refer to 8.1, 8.2.1 — 8.2.4);
- recognition of manufacturers of oil-and-gas equipment and materials therefore with issue of a Recognition Certificate for Manufacturer (refer to 8.3);
- approval of welding consumables and welding procedures with issuing a Certificate of Approval for Welding Consumables, Welding Procedure Approval Test Certificate and certification of welders (refer to 8.1, 8.2.5 and 8.2.6);
- recognition of testing laboratories with issue of a corresponding certificate (refer to 8.4);
- technical supervision of oil-and-gas equipment during the FPU/MODU/FOP construction;
- technical supervision of the FPU/MODU/FOP oil-and-gas equipment in service.

3.2.2 Upon the results of the technical supervision the Register issues to the items of technical supervision the following documents (in the set form), which certify the compliance of the item of technical supervision to the Register requirements, as well as its manufacture (construction) under the Register technical supervision:
- **Certificate of conformity for a particular material or product (С, СЗ)** is a document certifying the conformity of the particular materials, products or groups of products with the requirements of the Register rules and normative documents;
- **Type Approval Certificate (СТО)** is a document certifying the conformity of types of products or groups of products with the requirements of the Register rules;
- **Recognition Certificate for Manufacturer (СПИ)** is a document certifying the recognition by the Register of the firm as manufacturer of materials and products for ships subject to the Register technical supervision;
- **Certificate of Approval for Welding Consumables (COCM) and Welding Procedure Approval Test Certificate (COTIC).**

3.2.3 The basic requirements for issue and the period of validity of the Register Certificates shall comply with Section 3, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.
4 REQUESTS AND CONTRACTS ON TECHNICAL SUPERVISION

4.1 To carry out works specified in 3.2.1, a firm shall apply to the Register with a written request to carry out technical supervision and to guarantee payment of the Register services, reimbursement of the Register expenses, as well as with the confirmation of familiarization and agreement with the General Conditions for Rendering Services by Russian Maritime Register of Shipping, which are constituent and integral part of all the contracts concluded by the Register.

4.2 The request shall provide the information to an extent sufficient for review and execution thereof.

4.3 Upon reviewing the request depending on the particular conditions of the future technical supervision (scope and item of supervision, duration, etc.), the Register, being guided by the regulations in force, decides on the necessity to conclude a contract on technical supervision or carries out technical supervision based on the request without concluding the contract.

4.4 The contract on technical supervision of the Register, which is compiled as the single document, specifies the items of technical supervision and regulates mutual relations, rights and responsibilities of the parties in the course of the Register technical supervision during construction of FPU/MODU/FOP and manufacture of materials and products for oil-and-gas equipment.

The contract specifies cost of technical supervision according to RS tariffs, procedure and terms of payment. Where technical supervision is carried out based on the request, without concluding the contract, works are paid and expenses reimbursed according to the invoices made out by the Register.
5 TECHNICAL DOCUMENTATION

5.1 GENERAL REQUIREMENTS

5.1.1 Prior to commencement of technical supervision of the FPU/MODU/FOP design, construction and/or operation with regard to oil-and-gas equipment, technical documentation shall be submitted to the Register for consideration in the amount sufficient to make sure that the requirements of the OGE Rules on the given equipment, materials and products therefore are fully met.

5.1.2 Amendments made in the technical documentation approved by the Register and dealt with the components and structures covered by the requirements of the OGE Rules shall be submitted to the Register for approval prior to their implementation.

5.1.3 Technical documentation for oil-and-gas equipment may be submitted to the Register as one of the following alternatives depending on a design stage:
- substantiation of investments in the FPU/MODU/FOP construction, particularly as the part of a project of field construction on the continental shelf;
- FPU/MODU/FOP concept design of field construction on the sea shelf;
- FPU/MODU/FOP technical design or feasibility study (project) of field construction on the continental shelf;
- FPU/MODU/FOP detailed design, process documentation and a project of repair-and-renewal operations;
- normative and technical documents, specifications, process procedures, as well as schedules of processes and operation of oil-and-gas equipment;
- technical documentation for oil-and-gas equipment components in accordance with 5.2.2.

5.1.4 For the rest the general regulations for review of the technical documentation by the Register shall comply with the requirements of Section 3, Part II "Technical Documentation" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.
5.2 TECHNICAL DOCUMENTATION OF THE FPU/MODU/FOP OIL-AND-GAS EQUIPMENT

5.2.1 Prior to commencement of the FPU/MODU/FOP construction, technical documentation for oil-and-gas equipment shall be submitted to the Register for review and approval in the amount specified in Section 4, Part I "Classification" of the MODU/FOP Rules and in Section 3, Part I "Classification" of the FPU Rules to the extent as it may be applied to the oil-and-gas equipment.

5.2.2 Technical documentation to be approved by the Register shall include sufficient information to confirm the compliance with the corresponding RS rules, as well as international conventions and agreements.

5.2.3 Non-compliance with the RS rules when it is impossible or impracticable to apply the procedure and scope of the Register technical supervision, prescribed by the OGE Rules, shall be decided by the Register Head Office (RHO) upon recommendation of the RS Branch Offices (refer to 2.7, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships).

5.2.4 The technical documentation for oil-and-gas equipment shall, in addition to 5.2.1, include:
- the procedure description (for the FPU/MODU/FOP design);
- description of equipment;
- specifications;
- general arrangement drawings, main assembly drawings, diagrams;
- RS rules documentation for products falling under the RS specific requirements (refer to Table 1.2.4, Part IX "Machinery" of the Rules for the Classification and Construction of Sea-Going Ships);
- necessary strength calculations;
- technical conditions and specifications;
- test programmes;
- plan of workmanship inspections;
- operating and maintenance manuals;
- analysis of risks and actions on provision of safe operation.

5.2.5 Test programmes shall generally provide for the following:
- verification of the product compliance with the technical documentation approved (agreed) by the Register;
- verification of equipment specifications;
- functional tests;
- inspections and audits (in accordance with the OGE Rules);
- tests after the audit (if necessary);
- specified test duration and modes, as well as necessary measures during tests;
- information on tolerance values and/or assessment criteria for test results;
- test standards and methods (may be submitted in a separate document which is to be referenced in the test programme).

5.2.6 Upon review of technical documentation by the Register at the design stages of the FPU/MODU/FOP oil-and-gas equipment is confirmed by the Register letters of conclusion for design stages or for an oil-and-gas equipment project as a whole, which confirm a possibility to introduce additional descriptive notations in the FPU/MODU/FOP class notation. Such letters are supplemented with the list of reviewed documentation.
6 CLASSIFICATION AND DESCRIPTIVE NOTATION
IN FPU/MODU/FOP CLASS NOTATION

6.1 Classification of the FPU/MODU/FOP objects is carried out in compliance with the requirements of Section 2, Part I "Classification" of the MODU/FOP Rules and Section 2, Part I "Classification" of the FPU Rules.

6.2 The FPU/MODU/FOP oil-and-gas equipment shall meet the requirements of the OGE Rules and have the relevant certificates and other documents confirming their compliance with the Register requirements (refer to Section 7).

6.3 In case the structures, machinery, arrangements and equipment of the systems used for drilling, production, gathering, treatment and transportation of well fluids, as well as the processes of their mounting and the FPU/MODU/FOP tests comply with the requirements of the OGE Rules, the additional descriptive notations, which define the main purpose of the oil-and-gas equipment installed, are introduced in the FPU/MODU/FOP class notation.

6.3.1 During manufacture, mounting and operation of oil-and-gas equipment under the Register technical supervision:
- **drilling (RS)** — with a drilling rig fitted;
- **subsea system (RS)** — with delivery of production from underwater production systems;
- **subsea pipeline (RS)** — with delivery (offloading) of production via a subsea pipeline;
- **oil production/treatment (RS)** — with an oil production and/or treatment system fitted;
- **gas production/treatment (RS)** — with a gas and gas condensate production and/or treatment system fitted;
- **oil and gas production/treatment (RS)** — with an oil and gas joint production and/or treatment system fitted.

6.3.2 During manufacture and mounting of oil-and-gas equipment without the Register technical supervision and operation of the equipment under the Register technical supervision:
- **drilling** — with a drilling rig fitted;
- **subsea system** — with delivery of production from underwater production systems;
- **subsea pipeline** — with delivery (offloading) of production via a subsea pipeline;
- **oil production/treatment** — with an oil production and/or treatment system fitted;
- **gas production/treatment** — with a gas and gas condensate production and/or treatment system fitted;
- **oil and gas production/treatment** — with an oil and gas joint production and/or treatment system fitted.

6.4 For the rest the requirements for assigning the character of classification, distinguishing marks and descriptive notations of the FPU/MODU/FOP class shall comply with 6.1.
7 NOMENCLATURE OF ITEMS OF THE REGISTER TECHNICAL SUPERVISION OF THE FPU/MODU/FOP OIL-AND-GAS EQUIPMENT

7.1 The Nomenclature of Items of the Register Technical Supervision of the FPU/MODU/FOP Oil-and-Gas Equipment (refer to Table 7.1) specifies the items with the relevant codes subject to the Register technical supervision during their manufacture at the manufacturer, mounting and testing on FPU/MODU/FOP, groups of items of technical supervision.

In this case, the Nomenclature is covered by the scope of requirements for items specified in Appendix 1 "Nomenclature of Items of the Register Technical Supervision", Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships in the degree in which they are applicable.

7.2 The materials and products of the FPU/MODU/FOP oil-and-gas equipment manufactured, installed and mounted under the Register technical supervision shall be delivered to the manufacturer, which perform the FPU/MODU/FOP construction, with the certificates or other documents evidencing their conformity to the requirements of the OGE Rules and/or to the standards recognized by the Register as acceptable (refer to Appendix 3).

7.3 Requirements for issue of certificates and documents on oil-and-gas equipment, including their scope and validity period, are specified in 5.2 — 5.5, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.

7.4 The Register technical supervision during manufacture and testing of serial materials and products of oil-and-gas equipment shall comply with the applicable requirements in Section 7, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.

7.5 The materials and products not being part of the Nomenclature may be subject to survey on request from the customer.

7.6 In case of the technical supervision of FPU/MODU/FOP constructed with use of brand-new materials and components of oil-and-gas equipment, the Register has a right to unilaterally introduce amendments to the Nomenclature.

Table 7.1

The Nomenclature of Items of the Register Technical Supervision of the FPU/MODU/FOP Oil-and-Gas Equipment

The Nomenclature is presented in the form of the table comprising six columns.

Column 1 ("Code of item"): identification code of the material, product, production process or software, which consists of eight characters, is indicated.

Column 2 ("Item of technical supervision"): name of the material, product, production process or software is indicated.

Columns 3 — 6: types of technical supervision are indicated:
- group of item of technical supervision (1 — 5);
- mounting;
- factory testing;
- operational testing.

Column 3 ("Group of item of technical supervision"): number of group of item of technical supervision according to which the type of technical supervision is assigned, is indicated. Possible schemes of technical supervision for groups are given in Tables 5.2-1 and 5.2-2, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.

Columns 4, 5, 6 ("Mounting", "Factory testing", "Operational testing"): necessity of technical supervision performed directly by the Surveyor to the Register (P) is indicated.

For the purpose of the Section:
- technical supervision during mounting — examination and confirmation of compliance of the Register-approved technical documentation regarding the scope and location of the items of technical supervision;
- factory testing during construction — testing of the items of technical supervision after their mounting on FPU/MODU/FOP under test pressure and test load for allowable safe working load and pull, as well as other tests confirming structure and reinforcement strength, mounting quality of systems and equipment;
- operational testing — testing confirming functionality and serviceability of the items of technical supervision. When the scopes of factory and operational testing concur, only one testing may be conducted.
<table>
<thead>
<tr>
<th>Code of item</th>
<th>Item of technical supervision</th>
<th>Technical supervision of the Register during manufacture of materials and products</th>
<th>during FPU/MODU/FOP construction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Group of item of technical supervision (1 — 5)</td>
<td>Mounting</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>25000000</td>
<td>OIL-AND-GAS EQUIPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25010000</td>
<td>ARRANGEMENTS, EQUIPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25010100</td>
<td>Drilling unit</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>25010101</td>
<td>Drilling derrick</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>25010102</td>
<td>Flare boom</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>25010103</td>
<td>Stack tip</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>25010200</td>
<td>Packaged modular plants</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>25010300</td>
<td>Derrick substructure</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>25010301</td>
<td>Support frame of derrick substructure</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>25010400</td>
<td>Tensioners and compensators of displacement of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25010401</td>
<td>risers</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>25010402</td>
<td>drill strings</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>25010500</td>
<td>Arrangements for securing for sea of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25010501</td>
<td>blowout equipment</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>25010502</td>
<td>wellhead components (WC)</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>25010600</td>
<td>Displacement systems and equipment for derrick substructures with drilling derrick and support frame:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25010601</td>
<td>support frame displacement</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>25010602</td>
<td>derrick substructure displacement</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>25020000</td>
<td>SYSTEMS AND PIPING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25020100</td>
<td>Drilling support systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25020101</td>
<td>well cementing system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020102</td>
<td>free-flowing materials system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020103</td>
<td>choke and kill systems</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020104</td>
<td>drilling riser system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020105</td>
<td>pipe tripping</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020106</td>
<td>stand raising and setting</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020107</td>
<td>equipment cooling</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020108</td>
<td>collision prevention</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020109</td>
<td>base fluid</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020110</td>
<td>salt brine</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020200</td>
<td>Drilling mud systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25020201</td>
<td>preparation and storage systems</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020202</td>
<td>gathering, cleaning and degassing system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020203</td>
<td>high pressure system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020204</td>
<td>low pressure system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020210</td>
<td>System of sludge injection into the bed:</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020211</td>
<td>for slurry preparation</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020212</td>
<td>sludge injection</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020300</td>
<td>Oil treating systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25020301</td>
<td>well fluid gathering system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020302</td>
<td>oil separation, stabilization, desalting and dehydration systems</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020303</td>
<td>associated petroleum gas gathering, treatment and utilization system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020400</td>
<td>Gas treating systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25020401</td>
<td>well fluid gathering system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020402</td>
<td>gas separation and dehydration systems</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020403</td>
<td>gas condensate gathering and treatment system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020404</td>
<td>absorbent regeneration system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020405</td>
<td>gas compression system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020406</td>
<td>gas-lift system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020500</td>
<td>Chemical agent reception, storage and delivery systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25020501</td>
<td>reception and storage system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25020502</td>
<td>delivery and distribution system</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Code of item</td>
<td>Item of technical supervision</td>
<td>Technical supervision of the Register during manufacture of materials and products</td>
<td>during FPU/MODU/FOP construction</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>25020600</td>
<td>Piping displacement systems of derrick substructures and support frame:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25020601</td>
<td>derrick substructure displacement</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25020602</td>
<td>support frame displacement</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25020700</td>
<td>Flare systems, pressure release and gas withdrawal systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25020800</td>
<td>Process heating/cooling systems</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25020900</td>
<td>Compressed-air systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25020901</td>
<td>instrumentation</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25020902</td>
<td>free-flowing component transportation systems</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25021000</td>
<td>Systems for water gathering, treatment and injection into the bed:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25021001</td>
<td>water treatment system</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25021002</td>
<td>water distribution system</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25021003</td>
<td>water injection system</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25021100</td>
<td>Hazardous drainage systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25021101</td>
<td>open systems</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25021102</td>
<td>closed systems</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25021200</td>
<td>Well fluid offloading systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25021201</td>
<td>measuring system</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25021202</td>
<td>transfer system</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25021300</td>
<td>Well completion and flushing systems</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25021310</td>
<td>Auxiliary systems of the drilling rig</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>25021400</td>
<td>Modular equipment of systems</td>
<td>3/4</td>
<td>P</td>
</tr>
<tr>
<td>25021500</td>
<td>Manifolds of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25021501</td>
<td>cementing systems</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>25021502</td>
<td>drilling mud</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>25021503</td>
<td>choke and kill lines</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>25021504</td>
<td>well fluid gathering system</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>25021505</td>
<td>gas lift</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>25021506</td>
<td>water injection</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25021600</td>
<td>High pressure lines:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25021601</td>
<td>cementing systems</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25021602</td>
<td>drilling mud systems</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25021603</td>
<td>oil and gas gathering and treatment systems</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25021700</td>
<td>High pressure hoses:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25021701</td>
<td>drilling</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25021702</td>
<td>cementing</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25021703</td>
<td>throttle/chock delivery</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25021704</td>
<td>other high pressure hoses</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25021705</td>
<td>for blowout equipment</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25021800</td>
<td>Blowout equipment control system units:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25021801</td>
<td>ram-type blowout preventers</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>25021802</td>
<td>universal blowout preventers</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>25021803</td>
<td>cross-tees and shut-off valves</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>25021804</td>
<td>blowout equipment test benches</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>25021900</td>
<td>Diverters units</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>25022000</td>
<td>Wellhead equipment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25022001</td>
<td>surface casing string heads</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>25022002</td>
<td>surface X-mas tree</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>25022003</td>
<td>valve control systems for WC</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>25022100</td>
<td>Process and hydraulic system fittings:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25022101</td>
<td>shut-off and regulating fittings</td>
<td>1/3</td>
<td>P</td>
</tr>
<tr>
<td>25022102</td>
<td>safety fittings</td>
<td>1/3</td>
<td>P</td>
</tr>
<tr>
<td>25022200</td>
<td>Fittings for free-flowing materials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25022201</td>
<td>shut-off and regulating fittings</td>
<td>1/3</td>
<td>P</td>
</tr>
<tr>
<td>25022202</td>
<td>safety fittings</td>
<td>1/3</td>
<td>P</td>
</tr>
<tr>
<td>Code of item</td>
<td>Item of technical supervision</td>
<td>Technical supervision of the Register during manufacture of materials and products</td>
<td>Group of item of technical supervision (1 — 5)</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>25022300</td>
<td>Hose stations for reception and delivery of fluids and free-flowing materials</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25022400</td>
<td>Water sprinkling system pipelines</td>
<td>1</td>
<td>P</td>
</tr>
<tr>
<td>25022500</td>
<td>Modular process units</td>
<td>3/4</td>
<td>P</td>
</tr>
<tr>
<td>25022600</td>
<td>Type production processes</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>25022700</td>
<td>Electrical insulating devices:</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25022701</td>
<td>insulating joints</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030000</td>
<td>MACHINERY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25030100</td>
<td>Well drilling and intervention mechanisms:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25030101</td>
<td>top drive</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>25030102</td>
<td>rotary table and drive</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>25030103</td>
<td>iron roughnecks</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030104</td>
<td>flexible pipe handling units (coiled tubing units)</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030105</td>
<td>mechanized pipe delivery catwalk</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030200</td>
<td>Drilling mud system machinery:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25030201</td>
<td>shale shakers (hydrocyclones)</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>25030202</td>
<td>mechanical mixers</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>25030203</td>
<td>jet mixers (ejectors)</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>25030204</td>
<td>screw conveyors</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>25030205</td>
<td>drilling mud degasifiers</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>25030206</td>
<td>screw centrifuges</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>25030207</td>
<td>free-flowing component reception devices</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>25030208</td>
<td>chemical solution preparation and feeding devices</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>25030300</td>
<td>Gas-pumping compressors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25030301</td>
<td>piston</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030302</td>
<td>centrifugal/axial</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030303</td>
<td>turbo expanders</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030304</td>
<td>other</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030400</td>
<td>Drilling system pumps:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25030401</td>
<td>piston (plunger) pumps</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030402</td>
<td>centrifugal pumps</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030403</td>
<td>other</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030500</td>
<td>Cementing system pumps:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25030501</td>
<td>centrifugal pumps</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030502</td>
<td>piston (plunger) pumps</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030503</td>
<td>membrane pumps</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030504</td>
<td>other</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030600</td>
<td>Sludge pumps:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25030601</td>
<td>centrifugal pumps</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030602</td>
<td>piston (plunger) pumps</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030603</td>
<td>screw pumps</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030604</td>
<td>other</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030700</td>
<td>Pumps of well fluid treatment and offloading systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25030701</td>
<td>piston (plunger) pumps</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030702</td>
<td>centrifugal pumps</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030800</td>
<td>Other pumps</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030900</td>
<td>Hydraulic stations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25030901</td>
<td>drilling systems (top drive, rotor, drawworks)</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030902</td>
<td>automatic pipe handling systems</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030903</td>
<td>displacement system for derrick substructures with drilling derrick and support frame</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030904</td>
<td>displacement systems for blowout equipment and wellhead components</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030905</td>
<td>pipe handling mechanisms, tongs and cranes</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25030906</td>
<td>control systems for wellhead components and shut-off valves</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>25030907</td>
<td>control systems for blowout equipment</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>Code of item of technical supervision</td>
<td>Technical supervision of the Register during manufacture of materials and products</td>
<td>Group of item of technical supervision (1 — 5)</td>
<td>Mounting</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>25031000</td>
<td>Hydraulic cylinders of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25031001</td>
<td>displacement system for derrick substructures with drilling derrick and support frame</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25031002</td>
<td>displacement systems for blowout equipment and wellhead components</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25031003</td>
<td>hydraulic pneumatic drives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25031004</td>
<td>other hydraulic cylinders</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25031100</td>
<td>Hydro pneumatic accumulators of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25031101</td>
<td>blowout equipment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25031102</td>
<td>string tensioning and displacement compensation system</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25031103</td>
<td>other hydraulic accumulators</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25031200</td>
<td>Hydraulic lifting jacks:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25031201</td>
<td>drilling derrick alignment systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25031300</td>
<td>Modular machinery installations</td>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td>25040000</td>
<td>HEAT EXCHANGERS AND PRESSURE VESSENS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25040100</td>
<td>Separators of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25040101</td>
<td>drilling mud systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040102</td>
<td>oil treatment systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040103</td>
<td>gas/condensate treatment systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040200</td>
<td>Multiphase separators</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040300</td>
<td>Electrical dehydrators</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040400</td>
<td>Desalters</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040500</td>
<td>Mass exchanger columns</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040600</td>
<td>Pig launching/receiving systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040601</td>
<td>Launchers/receivers</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>25040602</td>
<td>Vessels and tanks</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040700</td>
<td>Heat exchangers:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25040701</td>
<td>plate-type heat exchangers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040702</td>
<td>shell-and-tube heat exchangers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040703</td>
<td>capacitive heat exchangers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040800</td>
<td>Direct-fired heaters</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25040900</td>
<td>Process water treatment plants</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25041000</td>
<td>Process vessels of systems for storing and transporting free-flowing materials of the drilling rig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25041100</td>
<td>Modular process units</td>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td>25041200</td>
<td>Containers:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25041201</td>
<td>open drain containers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25041202</td>
<td>closed drain containers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25041203</td>
<td>discharge containers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25041300</td>
<td>Type production processes</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25060000</td>
<td>ELECTRICAL EQUIPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25060100</td>
<td>Electrical drives of shut-off and regulating fittings</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>25070000</td>
<td>MATERIALS AND WELDING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25070100</td>
<td>Steel rolled products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25070101</td>
<td>for heat exchangers, pressure vessels and pipes</td>
<td>1M</td>
<td></td>
</tr>
<tr>
<td>25070102</td>
<td>pipes for heat exchangers and pressure vessels</td>
<td>1M</td>
<td></td>
</tr>
<tr>
<td>25070103</td>
<td>pipes for process piping</td>
<td>1M</td>
<td></td>
</tr>
<tr>
<td>25070104</td>
<td>parts of process piping</td>
<td>1M</td>
<td></td>
</tr>
<tr>
<td>25070200</td>
<td>Steel semi-finished products for boilers, pressure vessels, parts of piping and manifolds</td>
<td>1M</td>
<td></td>
</tr>
<tr>
<td>25070300</td>
<td>Welding consumables</td>
<td>1M</td>
<td></td>
</tr>
<tr>
<td>25080000</td>
<td>CARGO-HANDLING GEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25080100</td>
<td>Winches:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25080101</td>
<td>drilling drawworks</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>25080102</td>
<td>drilling floor, including hydraulic catheads</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25080103</td>
<td>personnel raising winch</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>25080104</td>
<td>general purpose winch</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Table 7.1 — continued

<table>
<thead>
<tr>
<th>Code of item</th>
<th>Item of technical supervision</th>
<th>Technical supervision of the Register</th>
<th>during manufacture of materials and products</th>
<th>during FPU/MODU/FOP construction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group of item of technical supervision</td>
<td>Mounting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1 — 5)</td>
<td>3</td>
</tr>
<tr>
<td>1 25080105</td>
<td>block-and-tackle/pulley for blowout equipment displacement</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080106</td>
<td>stabbing board/runaround winch</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080107</td>
<td>well logging hoists</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080200</td>
<td>Pipe handling/displacement arrangements:</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080201</td>
<td>horizontal pipe handling machines</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080202</td>
<td>vertical pipe handling machines</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080203</td>
<td>pipe manipulators</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080204</td>
<td>pipe setting system overhead cranes</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080205</td>
<td>pipe deck cranes</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080206</td>
<td>cross-members for pipes</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080207</td>
<td>riser-handling systems</td>
<td></td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>25080300</td>
<td>Overhead and pedestal cranes:</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080301</td>
<td>blowout equipment overhead cranes</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080302</td>
<td>wellhead component overhead cranes</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080303</td>
<td>deck pedestal cranes</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080304</td>
<td>beam cranes</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080400</td>
<td>Others:</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080401</td>
<td>stage of a drilling derrick</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080402</td>
<td>basket for servicing a drilling well</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080403</td>
<td>block-and-tackle unit</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080404</td>
<td>top drive elevator</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080405</td>
<td>crown block with pulleys</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080406</td>
<td>hook/block-hook</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080407</td>
<td>deadline anchor</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080408</td>
<td>wireline spooling and storage device</td>
<td></td>
<td>1</td>
<td>P</td>
</tr>
<tr>
<td>25080409</td>
<td>pneumatic breaker</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25080410</td>
<td>air-power slip</td>
<td></td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>25090000</td>
<td>AUTOMATION</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>25090100</td>
<td>Automated process control system, emergency shutdown (ESD) system</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>25090200</td>
<td>Automated control system of drilling unit, emergency shutdown (ESD) system</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>25090201</td>
<td>drilling equipment control system</td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25090202</td>
<td>local control systems, including control panel</td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>25090203</td>
<td>driller’s control console</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1 Group 3 for units: design pressure up to 1.6 MPa, total power up to 100 kW.
2 Group 1 for C-class valves (refer to 2.4.3, Part V “Systems and Piping”).
8 TECHNICAL SUPERVISION DURING MANUFACTURE OF MATERIALS AND PRODUCTS AT THE MANUFACTURER

8.1 GENERAL

8.1.1 The requirements of this Section apply during technical supervision of materials and structural components used during manufacture and repair of the FPU/MODU/FOP oil-and-gas equipment and listed in the Nomenclature (refer to Table 7.1).

8.1.2 In separate cases, at the RS discretion, technical supervision may be performed of the materials and products not contained in the Nomenclature, which are newly developed or are the components of the products listed in the Nomenclature and which functionally provide the safety of the items of technical supervision. For this purpose, specimens of materials, products or new production processes after review of technical documentation by the Register shall be subject to the tests according to the program agreed with the Register.

8.1.3 In addition to the requirements of this Section, materials and products of oil-and-gas equipment shall comply with the requirements of the relevant sections of the OGE Rules, as well as the requirements of the Register-approved technical documentation, specifications and other normative and technical documents adopted for the FPU/MODU/FOP project and recognized by the Register.

8.1.4 Materials and products of oil-and-gas equipment having no certificates and/or other documents confirming their compliance with the Register requirements are not allowed for use during the FPU/MODU/FOP construction and operation.

8.1.5 The Register performs technical supervision at the manufacturer's on the basis of the contract or request on technical supervision (refer to Section 4).

When rendering services specified in 8.2 and 8.3, concluding the contract the manufacturer shall be audited for conformity with the requirements of Sections 8 and 11, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.

8.1.6 Depending on the item belonging to the group of technical supervision, the compliance of materials and products with the RS requirements shall be confirmed by the following documents:

1. Certificate filled-in and signed by the Register (C);
2. Certificate filled-in and signed by an official of the firm (manufacturer) and drawn up (endorsed) by the Register (C3);
3. Document drawn up by the manufacturer in which the material or product compliance with the RS requirements (MC) is declared;
4. Document drawn up by the manufacturer according to the standards of the firm (M); it shall contain data satisfactory to RS.

8.1.7 The contents of the Certificates (C, C3) and the Document (MC) shall identify the material or product, their types, main parameters, as well as the manufacturer of materials and products.

Document (MC) shall at least contain:
- address of the manufacture place;
- name of technical documentation on an item and date of its approval by RS;
- name, type or grade of the material or product;
- manufacturing or serial number, lot number (as relevant);
- name of the document containing data on the surveys and tests performed by the firm (manufacturer);
- number, issue date, and validity period of the Type Approval Certificate (CTO);
- firm (manufacturer) statement of the item compliance with the approved type specified in the Type Approval Certificate (CTO);
- signature of the authorized person of the firm (manufacturer).
Validity period of the Certificates (С, СЗ) and Documents (М, МС) is not specified.

For the products of group 2, the contents of Document (MC) shall be coordinated during the type approval.

8.1.8 In order to obtain the Certificate of Conformity, the manufacturer shall apply to the Register with a request. Technical documentation on the materials or products within the scope regulated by the Register rules shall be submitted together with the request.

8.1.9 Upon review of the technical documentation, the Register sends a letter of conclusion to the manufacturer. Where deemed necessary, the manufacturer shall submit the testing program to the Register to be agreed upon.

8.1.10 The manufacturer shall provide all the conditions necessary for the Register to carry out the technical supervision, namely, shall:

present the required technical documentation, in particular, manufacturer's documents on quality control of the products;
prepare the items of technical supervision for survey in the scope required;
provide for safety of surveys;
provide for availability of the officials authorized to present the items of technical supervision for surveys and tests;
timely inform the Register of the time and place of surveys and tests of the items of technical supervision.

Where the conditions required for performance of surveys are not fulfilled by the manufacturer, the Register has the right to refuse to carry out surveys or to witness tests.

8.1.11 In all other respects the general regulations on technical supervision during manufacture of the oil-and-gas equipment materials and products shall meet the requirements of Section 2, Part I "General Regulations for Technical Supervision", Section 1, Part III "Technical Supervision during Manufacture of Materials" and Section 1, Part IV "Technical Supervision during Manufacture of Products" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.
8.2 TYPE APPROVAL OF MATERIALS, PRODUCTS AND PRODUCTION PROCESSES

8.2.1 Type Approval Certificate (CTO) is a document of the Register, which certifies that a construction, properties, parameters, characteristics of a type material or product, found in the course of surveys and indicated in the approved technical documentation, meet the Register requirements and may be used for items of technical supervision for the intended purpose.

8.2.2 The Type Approval Certificate (CTO) for the type production process certifies that an item of technical supervision manufactured according to the particular type production process and having characteristics and parameters indicated in the approved technical documentation meets the Register requirements and may be used for the intended purpose.

8.2.3 In order to obtain the Type Approval Certificate (CTO), the firm shall apply to the Register with a request and submit the technical documentation on the material, product or production process, as well as the program and schedule of tests. When reviewing and approving this documentation, the scope of surveys during manufacture and testing of specimens shall be specified.

8.2.4 The Type Approval Certificate (CTO) is issued by the Register upon approval of the technical documentation and satisfactory results of the surveys of the materials, products or production processes submitted. For the material or product manufactured according to the established production process the Type Approval Certificate (CTO) is issued, having regard to the data on earlier tests, production and operation experience. Account may be taken of the Type Approval Certificate (CTO) or equivalent document of another classification society or competent body or results of the tests of a type specimen conducted with participation of the above organizations.

8.2.5 Where a single approval is given for the oil-and-gas equipment, Certificate (C) may be issued without issuing Type Approval Certificate (CTO).

8.2.6 For welding consumables the Certificate of Approval for Welding Consumables (COCM) is issued, being at the same time the document certifying recognition by the Register of the firm as the manufacturer of welding consumables in accordance with the requirements of the Register rules.

The Certificate of Approval for Welding Consumables (COCM) is issued for a period of up to 5 years subject to annual endorsement.

8.2.7 The Welding Procedure Approval Test Certificate (COTTIC) is a Register document certifying that a welding procedure used at a shipyard or firm (manufacturer) of welded structures has been tested and approved by the Register for application.

The Register may take into account the welding process approved by another classification organization or competent body or results of weld joint tests witnessed by these organizations.

The Welding Procedure Approval Test Certificate (COTTIC) is issued for a period of up to 5 years and subject to endorsement at least once every 2.5 years.

8.2.8 In other cases type approval of materials, products and production processes shall be carried out according to Section 6, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.
8.3 RECOGNITION OF FIRMS (MANUFACTURERS)

8.3.1 Recognition of firms (manufacturers) of materials and products of oil-and-gas equipment in cases provided by the OGE Rules shall be carried out in accordance with Sections 8 and 11, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships and this Section.

8.3.2 Recognition procedure for a manufacturer is carried out on the basis of the request submitted by the manufacturer to the RS Branch Office. Recognition of the manufacturer by the Register shall be confirmed by issue of a Recognition Certificate for Manufacturer (СПИ).

8.3.3 Audit of conformity or recognition of the firm by the Register includes:
- review of the documents confirming the compliance of the firm with the Register requirements;
- survey of the firm.

8.3.4 The manufacturer documentation is reviewed to determine its compliance with the Register requirements. The manufacturer shall have normative and technical documents currently in force, which are necessary to perform activities in the specified area.

8.3.5 The target of the manufacturer survey is to directly determine its compliance with the Register requirements. The manufacturer shall carry out the check tests of the material and product specimens from the specified area according to the Register-approved program, which shall be witnessed by a Register representative. The tests shall confirm the compliance of production and product parameters with the requirements of documentation and the OGE Rules, and also specify the proper level of quality stability.
8.4 RECOGNITION OF LABORATORIES

8.4.1 Testing laboratories engaged in non-destructive examination, destructive and other types of examination during manufacture, mounting, repair, re-equipment, operation and technical diagnosis of the FPU/MODU/FOP oil-and-gas equipment shall be, generally, recognized by the Register.

8.4.2 Recognition procedure for a testing laboratory is carried out on the basis of the request submitted by testing laboratory to the RS Branch Office.

8.4.3 The Register requirements for the testing laboratories are given in Sections 8 and 10, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.

8.4.4 Recognition of the testing laboratories by the Register includes:

- review of the documents confirming the compliance of the testing laboratory with the Register requirements;
- survey of the testing laboratory, including performance of check tests.

8.4.5 Recognition of the testing laboratory by the Register shall be confirmed by the Recognition Certificate of Testing Laboratory (СПЛ) issued in accordance with requirements of 3.4 — 3.7, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.

8.4.6 In individual cases, at the Register discretion, tests may be conducted in the testing laboratories not recognized by the Register. At that prior to performance of tests, compliance of the testing laboratory with the requirements of Section 8 and 10.2.1.1, 10.2.2.1, 10.2.2.2, 10.2.4.1, 10.2.4.2, 10.2.5 and 10.2.6 of Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships shall be verified.
8.5 AUDIT OF FIRMS

8.5.1 The requirements of this Chapter apply to the firms performing the activity, which kinds are specified in Table 8.5.1, provided RS performs technical supervision of the drilling and process equipment in compliance with 1.1.3, Part I "Classification" of the MODU/FOP Rules.

<table>
<thead>
<tr>
<th>Code</th>
<th>Kinds of activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>25501000</td>
<td>Diagnostics of devices, installations, machinery, steel structures of drilling and process equipment</td>
</tr>
<tr>
<td>25502000</td>
<td>Conversion, modernization and repair of items of technical supervision (drilling and process equipment)</td>
</tr>
<tr>
<td>25503000</td>
<td>Installation and commissioning of drilling and process equipment</td>
</tr>
<tr>
<td>25504000</td>
<td>Maintenance of drilling and process equipment</td>
</tr>
<tr>
<td>25505000</td>
<td>Application of internal anticorrosive coatings of aggressive media tanks</td>
</tr>
</tbody>
</table>

8.5.2 Where technical supervision is conducted in the firms engaged in the activity with codes 25501000, 25502000, 25503000, 25504000, 25505000, these firms shall be audited by RS for compliance with the requirements of Section 12, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships and special requirements.

8.5.3 Compliance of the firm with the requirements of this Chapter is confirmed by the Certificate of Firm Conformity (CCП), which is issued in accordance with 3.4 – 3.7, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships. In case the Certificate of Firm Conformity (CCП) is available, the audits are conducted in accordance with the conditions of its issue.

8.5.4 The firm shall demonstrate that its activity is performed in the area indicated in the request.

8.5.5 Special requirements.

8.5.5.1 Special requirements for the firms that perform activity "Application of internal anticorrosive coatings of aggressive media tanks" (code 2550500).

8.5.5.1.1 Personnel.

The technical personnel directly involved in application of coating/lining shall have sufficient documented experience to perform application works, as well as qualification documents confirming possible application of coating/lining.

8.5.5.1.2 Technique.

The firm shall have the technique necessary for performance of the activities related to application of coating/lining, including equipment and instruments to perform the following production operations: surface preparation and cleaning; preparation and control of the coating/lining compositions; application of coating/lining.

8.5.5.1.3 Measurement assurance.

The firm shall have and apply the necessary measurement assurance, including: ambient temperature and humidity, dew point meters; wet film coating thickness gauges; dry film coating thickness gauges; coating hardness gauges; coating integrity control device.

8.5.5.1.4 Files of the firm documents.

The firm shall have the valid normative and technical documents necessary to perform activities related to application of coating/lining with the materials agreed with RS, including type production processes (procedures and/or standards) for application of coating/lining, specifications for materials, quality control plan for application of coating/lining and instructions for elimination of coating/lining imperfections.
8.5.5.1.5 Checking and control.

The firm shall perform incoming inspection and functional control, provide work acceptance conditions according to the requirements of the type production processes approved by RS and confirmed by the following documents:

- brief process manuals for specific stages of the surface preparation and application of coating/lining approved by RS;
- certificates of a competent organization for the applied materials confirming performance of type tests according to ISO 18796-1 or other valid national or international standards;
- inspection report on compliance of the works performed with the operating procedure on the surface preparation and coating application;
- test results.
9 TECHNICAL SUPERVISION OF OIL-AND-GAS EQUIPMENT
DURING FPU/MODU/FOP CONSTRUCTION

9.1 GENERAL

9.1.1 Technical supervision of oil-and-gas equipment during the FPU/MODU/FOP construction is performed on the basis of the contract signed between the Register and the shipyard (refer to Section 4).

9.1.2 Scope and procedure of the Register technical supervision, types of checks, tests and control are indicated in the List of Items of Technical Supervision (hereinafter — the List). Along with the surveys performed under the List, additional periodical checks may be conducted (refer to 9.1.4).

9.1.3 The List shall be elaborated by the firm (shipyard) and agreed upon with the RS Branch Office, which shall carry out technical supervision. The List is compiled on the basis of the Nomenclature for each prototype (single) structure and a series as well.

9.1.3.1 To be indicated in the List are items of technical supervision for arrangements, equipment, systems and piping, machinery, heat exchangers, pressure vessels, electrical equipment, refrigerating plants, cargo handling gear and automation having regard to the FPU/MODU/FOP oil-and-gas equipment.

9.1.3.2 Referred to the items of technical supervision are also production, mounting processes and individual works during the FPU/MODU/FOP construction, re-equipment, modernization and repair subject to technical supervision by the Register.

9.1.3.3 Scope of surveys, numbers of drawings, layouts, procedures and programs of tests, production processes, etc. shall be indicated in the List for each item of technical supervision.

9.1.3.4 One presentation to the Surveyor to the Register, covering one or several items of technical supervision or works completed in the particular production workshop or at the particular stage of the FPU/MODU/FOP oil-and-gas equipment mounting shall be made for each item of the List. The main target of surveys under the List is checking of the quality of the item of technical supervision at a particular stage of manufacture as provided by the production process and its admittance for further stages of the equipment mounting.

9.1.3.5 Use may be made as the List of one or several documents elaborated by the firm (shipyard) in accordance with its existing practice, such as manufacturer's standard on presentation to the Register of works performed, acceptance log books, etc.

9.1.3.6 Surveys under the List are performed by the Surveyor to the Register upon presentation by the technical control body of the item of technical supervision or completed works together with the documents issued, finally verified by the shipyard and prepared for submission to the Register.

9.1.4 Along with the surveys performed according to the List, the Register carries out periodical inspections not associated with the official presentation by the firm (shipyard) technical control body but affecting workmanship.

9.1.5 Prior to mounting of machinery and arrangements of oil-and-gas equipment referred to the Nomenclature, the Surveyor to the Register shall check that these items of technical supervision are provided with the documents confirming their compliance with the Register requirements.
9.2 REQUIREMENTS FOR TESTING

9.2.1 Technical supervision of the Register in the course of tests of oil-and-gas equipment aims at checking the conformity of its quality and completeness with the approved technical design, Register rules and standards.

9.2.2 The Register technical supervision during testing of the FPU/MODU/FOP oil-and-gas equipment is carried out for machinery, arrangements, equipment and systems included in the Nomenclature.

9.2.3 Oil-and-gas equipment is tested according to the Register-approved program, which shall consider the requirements of standards and technical documents for delivery, as well as the requirements of firms' (manufacturers') programs for testing the equipment supplied. Concurrent with the item to be tested, the technical documentation required for survey is submitted. Surveys and tests of the item of technical supervision are carried out by the Register following the item acceptance by the firm's technical control body.

9.2.4 The items of technical supervision, which test results do not meet the requirements of the applicable rules or the approved documentation, shall be re-tested upon elimination of causes of unsatisfactory test results. Elimination of deficiencies and re-testing shall be agreed upon with the Register. Re-testing shall not affect further tests or interfere with their safety.

9.2.5 Upon completion of oil-and-gas equipment tests, the Register shall inform the firm about all the deficiencies to be eliminated before the Register issues the documents prescribed in 9.3, as well as a list of the items of technical supervision to be opened up and the scope of inspection.

9.2.6 Oil-and-gas equipment shall, where possible, be tested during the tests specified in 13.10 — 13.15, Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships, and shall meet the requirements for their performance as applicable.
9.3 DOCUMENTS ISSUED ON TECHNICAL SUPERVISION RESULTS

In order to confirm the compliance of oil-and-gas equipment with the requirements of the OGE Rules, the Register inserts descriptive notations specified in 6.3 into the FPU/MODU/FOP class notation with a corresponding entry in a Classification Certificate.
10 TECHNICAL SUPERVISION OF OIL-AND-GAS EQUIPMENT IN SERVICE

10.1 GENERAL

10.1.1 The requirements of this Section apply to items under technical supervision included in the Nomenclature.

10.1.2 Technical operation of the FPU/MODU/FOP oil-and-gas equipment in the Register class shall be carried out under the Register technical supervision as periodical surveys. When necessary (after accidents and incidents on FPU/MODU/FOP related to oil-and-gas equipment), occasional surveys of that equipment shall be carried out.

10.1.3 Periodical surveys are carried out by the Register to confirm/extend the FPU/MODU/FOP class with regard to oil-and-gas equipment. It is recommended to harmonize the oil-and-gas equipment survey system with the Register classification surveys of those structures as a whole.

10.1.4 General requirements for carrying out periodical surveys by the Register shall comply with Part I "General Provisions" of the Rules for the Classification Surveys of Ships in Service.
10.2 SURVEY TYPES AND SCHEDULE

10.2.1 General.
10.2.1.1 The FPU/MODU/FOP oil-and-gas equipment is subject to the following surveys:
- initial;
- periodical (special, annual and intermediate);
- occasional.

10.2.1.2 Initial surveys are divided into surveys carried out during the FPU/MODU/FOP construction and oil-and-gas equipment mounting under the Register technical supervision, and surveys of oil-and-gas equipment of FPU/MODU/FOP constructed under the supervision (or without supervision) of another classification society or supervisory body.

10.2.1.3 Special survey is carried out to renew a class with regard to oil-and-gas equipment (descriptive notations added to the class notation specified in 6.3), as a rule, at intervals not exceeding 5 years of the FPU/MODU/FOP oil-and-gas equipment service, provided annual surveys and one intermediate survey are carried out within this period in the scope prescribed by the OGE Rules.

10.2.1.4 Annual surveys are carried out to confirm the FPU/MODU/FOP class validity with regard to oil-and-gas equipment each calendar year.

10.2.1.5 Intermediate survey is carried out to specifically confirm the class validity with regard to oil-and-gas equipment, generally, instead of the 2nd or 3rd annual survey.

10.2.1.6 Occasional survey is carried out after accidents, incidents, off-schedule repair of oil-and-gas equipment and in other necessary cases.

10.2.2 Initial surveys.
10.2.2.1 Initial survey is carried out to confirm the compliance of oil-and-gas equipment with the requirements of the OGE Rules and to insert the descriptive notations into the FPU/MODU/FOP class notation, which equipment is submitted to the Register for the first time.

Also submitted to initial survey is the oil-and-gas equipment of FPU/MODU/FOP that previously had the appropriate descriptive notations added to the Register class notation but lost them due to some reasons (withdrawal of descriptive notations added to the class notation) or which were modernized with an extended area of application that requires change of the descriptive notations added to the FPU/MODU/FOP class notation.

Initial survey consists of visual examination, checks, tests and measurements, which extent is each time determined by the Register depending on the environment and service period, procedures used in drilling, production, treatment and offloading systems, technical condition of equipment, etc.

10.2.2.2 The FPU/MODU/FOP oil-and-gas equipment manufactured and installed not in compliance with the Register rules, without supervision of the Register, another classification or supervisory body may be submitted to initial survey.

In this case initial survey, which scope is established by the Register, implies thorough examination and overall survey accompanied, where necessary, by testing of oil-and-gas equipment and its components to confirm their full compliance with the requirements of the OGE Rules.

10.2.2.3 Where the FPU/MODU/FOP oil-and-gas equipment and the relevant technical documentation are provided with certificates or permits issued by another classification society or a supervisory body, initial survey may be carried out in the scope of a special survey.

Where the necessary technical documentation, certificates or permits for any component of oil-and-gas equipment are unavailable, the scope of the Register surveys for such equipment may be increased.

10.2.3 Annual surveys.
10.2.3.1 Annual survey of oil-and-gas equipment carried out to confirm the validity of the descriptive notations added to the FPU/MODU/FOP class notation is aimed at establishing that the technical condition of this equipment meets the conditions of retaining these descriptive notations, and also at checking the operation of single mechanisms, arrangements and units covered by the requirements of the OGE Rules.
10.2.3.2 Scope of annual surveys is specified by the Register. Annual surveys may be carried out, as a rule, within ±3 months from the appointed date of special survey.

10.2.4 Intermediate surveys.
Intermediate survey of the FPU/MODU/FOP oil-and-gas equipment is carried out between special surveys at the dates agreed with the Register. Scope of intermediate survey is specified by the Register.

10.2.5 Special surveys.
10.2.5.1 Special surveys carried out for renewal of the validity of the descriptive notations added to the FPU/MODU/FOP class notation are aimed at establishing that the technical condition of oil-and-gas equipment, changes in its composition and design comply with the requirements of the OGE Rules.

10.2.5.2 Special surveys, which scope is specified by the OGE Rules, are carried out with the Register set five-year intervals with renewal of validity of the descriptive notations added to the FPU/MODU/FOP class notation for the following five years.

10.2.5.3 Necessary examinations, measurements, tests, operational testing and other actions to confirm the compliance of the FPU/MODU/FOP oil-and-gas equipment with the requirements of the OGE Rules shall be carried out within a period between special surveys and immediately during the special survey.

10.2.5.4 The dates of special surveys of the FPU/MODU/FOP oil-and-gas equipment are determined starting from the date of initial survey, date of construction, date of changes of descriptive notations added to the class notation or date of insert of descriptive notations into the class notation of FPU/MODU/FOP constructed without the Register supervision.

10.2.6 Occasional surveys.
10.2.6.1 Occasional surveys of the FPU/MODU/FOP oil-and-gas equipment are carried out in all other cases, excepting initial and periodical surveys. Survey scope and procedure are specified by the Register proceeding from the survey purpose, service period and technical condition of the equipment.

10.2.6.2 Occasional surveys are carried out to reinstate the validity of the descriptive notations added to the FPU/MODU/FOP class notation after their suspension, to check the elimination of identified defects and damages, after accidents, at significant replacement of oil-and-gas equipment, re-equipment and repairs not concurring in terms with periodical surveys.

10.2.6.3 Occasional survey after accident is carried out to identify the type and nature of damage, its cause, to determine the extent of works for elimination of the accident consequences, as well as the possibility and conditions of retaining the descriptive notations added to the FPU/MODU/FOP class notation.

10.2.7 Scope of periodical surveys.
Scope of periodical surveys of the FPU/MODU/FOP oil-and-gas equipment carried out by the Register shall comply with Table 10.2.7.

10.2.8 Documents issued by the Register upon the survey results.
10.2.8.1 Upon the results of annual/intermediate/special surveys of oil-and-gas equipment, the Register issues a Report, which confirms the validity of the descriptive notations added to the FPU/MODU/FOP class notation for the following annual period, provided the survey results are satisfactory.

10.2.8.2 Upon satisfactory results of special survey of the oil-and-gas equipment, the Register, on the basis of the Report specified in 10.2.8.1, renews the validity of the descriptive notations added to the FPU/MODU/FOP class notation specified in 6.3, making a relevant entry in the Classification Certificate being in force (annually confirmed) till the following special survey.

10.2.8.3 Upon the results of initial survey of the oil-and-gas equipment, the Register issues the Report specified in 9.3.1. In case of the satisfactory results of initial survey of the oil-and-gas equipment, the Register, on the basis of the above documents, inserts the descriptive notations into the FPU/MODU/FOP class notation making a relevant entry in the Classification Certificate.
Table 10.2.7

Scope of periodical surveys of the FPU/MODU/FOP oil-and-gas equipment

Symbols:

O — examination with access, opening-up or dismantling being provided where necessary;
C — external examination;
M — measurements of wears, clearances, insulation resistance, etc.;
H — pressure tests;
P — operational testing of machinery, equipment, arrangements, external examination included;
E — control of the availability of valid documents and/or stamps testifying to the instrumentation being checked and calibrated by relevant competent authorities, if subject thereto;
I — testing of cargo-handling gear.

<table>
<thead>
<tr>
<th>Nos.</th>
<th>Item to be surveyed</th>
<th>Surveys of oil-and-gas equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st annual</td>
</tr>
<tr>
<td>1.1</td>
<td>Drilling unit</td>
<td>C</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Drilling derrick</td>
<td>C</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Flare boom</td>
<td>C</td>
</tr>
<tr>
<td>1.1.3</td>
<td>Cold vent stack</td>
<td>C</td>
</tr>
<tr>
<td>1.2</td>
<td>Modular equipment</td>
<td>ORMI × 3</td>
</tr>
<tr>
<td>1.3</td>
<td>Derrick substructure</td>
<td>C</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Support frame of derrick substructure</td>
<td>C</td>
</tr>
<tr>
<td>1.4</td>
<td>Tensioners and compensators of displacement of:</td>
<td></td>
</tr>
<tr>
<td>1.4.1</td>
<td>Riser system</td>
<td>P</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Drill strings</td>
<td>P</td>
</tr>
<tr>
<td>1.5</td>
<td>Arrangements for securing for sea of:</td>
<td></td>
</tr>
<tr>
<td>1.5.1</td>
<td>Blowout equipment</td>
<td>P</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Wellhead components (WC)</td>
<td>P</td>
</tr>
<tr>
<td>1.6</td>
<td>Displacement systems and equipment for derrick substructures with drilling derrick and support frame:</td>
<td></td>
</tr>
<tr>
<td>1.6.1</td>
<td>Support frame displacement</td>
<td>P</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Derrick substructure displacement</td>
<td>P</td>
</tr>
<tr>
<td>2.1</td>
<td>Drilling support systems:</td>
<td></td>
</tr>
<tr>
<td>2.1.1</td>
<td>Well cementing system²</td>
<td>C</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Free-flowing materials system³</td>
<td>C</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Choke and kill systems³</td>
<td>C</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Drilling riser system</td>
<td>C</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Pipe tripping</td>
<td>P</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Stand raising and setting</td>
<td>P</td>
</tr>
</tbody>
</table>
Table 10.2.7 — continued

<table>
<thead>
<tr>
<th>Nos.</th>
<th>Item to be surveyed</th>
<th>Surveys of oil-and-gas equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st annual</td>
</tr>
<tr>
<td>2.1.7</td>
<td>equipment cooling</td>
<td>P</td>
</tr>
<tr>
<td>2.1.8</td>
<td>collision prevention</td>
<td>P</td>
</tr>
<tr>
<td>2.1.9</td>
<td>base fluid</td>
<td>C</td>
</tr>
<tr>
<td>2.1.10</td>
<td>salt brine</td>
<td>C</td>
</tr>
<tr>
<td>2.2</td>
<td>Drilling mud systems:</td>
<td></td>
</tr>
<tr>
<td>2.2.1</td>
<td>preparation and storage systems</td>
<td>C</td>
</tr>
<tr>
<td>2.2.2</td>
<td>gathering, cleaning and degassing systems</td>
<td>C</td>
</tr>
<tr>
<td>2.2.3</td>
<td>high pressure system</td>
<td>C</td>
</tr>
<tr>
<td>2.2.4</td>
<td>low pressure system</td>
<td>C</td>
</tr>
<tr>
<td>2.2.5</td>
<td>System of sludge injection into the bed:</td>
<td>C</td>
</tr>
<tr>
<td>2.2.5.1</td>
<td>for slurry preparation</td>
<td>C</td>
</tr>
<tr>
<td>2.2.5.2</td>
<td>sludge injection</td>
<td>C</td>
</tr>
<tr>
<td>2.3</td>
<td>Oil treating systems:</td>
<td></td>
</tr>
<tr>
<td>2.3.1</td>
<td>well fluid gathering system</td>
<td>C</td>
</tr>
<tr>
<td>2.3.2</td>
<td>oil separation, stabilization, desalting and dehydration systems</td>
<td>C</td>
</tr>
<tr>
<td>2.3.3</td>
<td>associated petroleum gas gathering, treatment and utilization system</td>
<td>C</td>
</tr>
<tr>
<td>2.4</td>
<td>Gas treating systems:</td>
<td></td>
</tr>
<tr>
<td>2.4.1</td>
<td>well fluid gathering system</td>
<td>C</td>
</tr>
<tr>
<td>2.4.2</td>
<td>gas separation and dehydration systems < 10 MPa</td>
<td>C</td>
</tr>
<tr>
<td>2.4.3</td>
<td>gas separation and dehydration systems > 10 MPa</td>
<td>C</td>
</tr>
<tr>
<td>2.4.4</td>
<td>gas condensate gathering and treatment system < 10 MPa</td>
<td>C</td>
</tr>
<tr>
<td>2.4.5</td>
<td>gas condensate gathering and treatment system > 10 MPa</td>
<td>C</td>
</tr>
<tr>
<td>2.4.6</td>
<td>absorvent regeneration system</td>
<td>C</td>
</tr>
<tr>
<td>2.4.7</td>
<td>gas compression system < 10 MPa</td>
<td>C</td>
</tr>
<tr>
<td>2.4.8</td>
<td>gas compression system > 10 MPa</td>
<td>C</td>
</tr>
<tr>
<td>2.4.9</td>
<td>gas-lift system</td>
<td>C</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical agent reception, storage and delivery systems:</td>
<td></td>
</tr>
<tr>
<td>2.5.1</td>
<td>reception and storage system</td>
<td>C</td>
</tr>
<tr>
<td>2.5.2</td>
<td>delivery and distribution system</td>
<td>C</td>
</tr>
<tr>
<td>2.6</td>
<td>Piping displacement systems of derrick substructures and support frame:</td>
<td></td>
</tr>
<tr>
<td>2.6.1</td>
<td>derrick structure displacement</td>
<td>C</td>
</tr>
<tr>
<td>2.6.2</td>
<td>support frame displacement</td>
<td>C</td>
</tr>
<tr>
<td>2.7</td>
<td>Flare systems, pressure release and gas withdrawal systems</td>
<td>C</td>
</tr>
<tr>
<td>2.8</td>
<td>Process heating/cooling systems</td>
<td>P</td>
</tr>
</tbody>
</table>
Table 10.2.7 — continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Item to be surveyed</th>
<th>Surveys of oil-and-gas equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st annual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>2.9</td>
<td>Compressed-air systems:</td>
<td>C C C C C C OHM C C C C C C C C OHM</td>
</tr>
<tr>
<td>2.9.1</td>
<td>instrumentation</td>
<td>C C C C C C OHM C C C C C C C C OHM</td>
</tr>
<tr>
<td>2.9.2</td>
<td>free-flowing component transportation systems</td>
<td>C C C C C C OHM C C C C C C C C OHM</td>
</tr>
<tr>
<td>2.10</td>
<td>Systems for water gathering, treatment and injection into the bed:</td>
<td>C C O C O C OHM C C O C O C C C OHM</td>
</tr>
<tr>
<td>2.10.1</td>
<td>water treatment system</td>
<td>C C O C O C OHM C C O C O C C C OHM</td>
</tr>
<tr>
<td>2.10.2</td>
<td>water distribution system</td>
<td>C C O C O C OHM C C O C O C C C OHM</td>
</tr>
<tr>
<td>2.11</td>
<td>Hazardous drainage systems:</td>
<td>C C C C C C OHM C C C C C C C C OHM</td>
</tr>
<tr>
<td>2.11.1</td>
<td>open systems</td>
<td>C C C C C C OHM C C C C C C C C OHM</td>
</tr>
<tr>
<td>2.11.2</td>
<td>closed systems</td>
<td>C C C C C C OHM C C C C C C C C OHM</td>
</tr>
<tr>
<td>2.12</td>
<td>Well fluid offloading systems:</td>
<td>CE OE CE CE CE OE CE CE OH CE OE CE OE</td>
</tr>
<tr>
<td>2.12.1</td>
<td>measuring system</td>
<td>C O C C O C OHM C C O C O C C C OHM</td>
</tr>
<tr>
<td>2.12.2</td>
<td>transfer system¹</td>
<td>P P P P OMPH P P P P OMPH P P P P OMPH</td>
</tr>
<tr>
<td>2.13</td>
<td>Well completion and flushing systems</td>
<td>P P P P OMPH P P P P OMPH P P P P OMPH</td>
</tr>
<tr>
<td>2.13.1</td>
<td>Auxiliary systems of the drilling rig</td>
<td>P P P P OMPH P P P P OMPH P P P P OMPH</td>
</tr>
<tr>
<td>2.14</td>
<td>Modular equipment of systems</td>
<td>P P P P OMPH P P P P OMPH P P P P OMPH</td>
</tr>
<tr>
<td>2.15</td>
<td>Manifolds of:</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.15.1</td>
<td>cementing systems</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.15.2</td>
<td>drilling</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.15.3</td>
<td>choke lines</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.15.4</td>
<td>kill lines</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.15.5</td>
<td>well fluid gathering system</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.15.6</td>
<td>gas lift</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.16</td>
<td>High pressure lines:</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.16.1</td>
<td>cementing systems</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.16.2</td>
<td>drilling</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.17</td>
<td>High pressure hoses:</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.17.1</td>
<td>drilling</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.17.2</td>
<td>cementing</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.17.3</td>
<td>throttle/chock delivery</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.17.4</td>
<td>other high pressure hoses</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.17.5</td>
<td>for blowout equipment</td>
<td>C C C C OH C C C C OH C C C C OH</td>
</tr>
<tr>
<td>2.18</td>
<td>Blowout equipment control system units:</td>
<td>C C C C O C C C C O C C C C O</td>
</tr>
<tr>
<td>2.18.1</td>
<td>ram-type blowout preventers</td>
<td>C C C C O C C C C O C C C C O</td>
</tr>
<tr>
<td>2.18.2</td>
<td>universal blowout preventers</td>
<td>C C C C O C C C C O C C C C O</td>
</tr>
<tr>
<td>2.18.3</td>
<td>blowout equipment test benches</td>
<td>C C C C O C C C C O C C C C O</td>
</tr>
<tr>
<td>2.18.4</td>
<td>cross-tees and shut-off valves</td>
<td>C C C C O C C C C O C C C C O</td>
</tr>
</tbody>
</table>
Table 10.2.7 — continued

<table>
<thead>
<tr>
<th>Nos.</th>
<th>Item to be surveyed</th>
<th>Surveys of oil-and-gas equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st annual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd annual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3rd annual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th annual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st special</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd special</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3rd special</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th special</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st special</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd special</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3rd special</td>
</tr>
<tr>
<td>2.19</td>
<td>Diverter units</td>
<td></td>
</tr>
<tr>
<td>2.20</td>
<td>Wellhead equipment:</td>
<td></td>
</tr>
<tr>
<td>2.20.1</td>
<td>surface casing string heads</td>
<td></td>
</tr>
<tr>
<td>2.20.2</td>
<td>surface X-mas tree</td>
<td></td>
</tr>
<tr>
<td>2.20.3</td>
<td>valve control systems for WC</td>
<td></td>
</tr>
<tr>
<td>2.21</td>
<td>Process and hydraulic system fittings</td>
<td></td>
</tr>
<tr>
<td>2.21.1</td>
<td>shut-off and regulating fittings</td>
<td></td>
</tr>
<tr>
<td>2.21.2</td>
<td>safety fittings</td>
<td></td>
</tr>
<tr>
<td>2.22</td>
<td>Fittings for free-flowing materials:</td>
<td></td>
</tr>
<tr>
<td>2.22.1</td>
<td>shut-off and regulating fittings</td>
<td></td>
</tr>
<tr>
<td>2.22.2</td>
<td>safety fittings</td>
<td></td>
</tr>
<tr>
<td>2.23</td>
<td>Hose stations for reception and delivery of fluids and</td>
<td></td>
</tr>
<tr>
<td>2.24</td>
<td>Water sprinkling system pipelines</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td>Modular process units</td>
<td></td>
</tr>
<tr>
<td>2.26</td>
<td>Electrical insulating devices</td>
<td></td>
</tr>
<tr>
<td>2.26.1</td>
<td>insulating joints</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 MACHINERY</td>
</tr>
<tr>
<td>3.1</td>
<td>Well drilling and intervention mechanisms:</td>
<td></td>
</tr>
<tr>
<td>3.1.1</td>
<td>top drive</td>
<td></td>
</tr>
<tr>
<td>3.1.2</td>
<td>rotary table and drive</td>
<td></td>
</tr>
<tr>
<td>3.1.3</td>
<td>iron roughnecks</td>
<td></td>
</tr>
<tr>
<td>3.1.4</td>
<td>flexible pipe handling units (coiled tubing units)</td>
<td></td>
</tr>
<tr>
<td>3.1.5</td>
<td>mechanized pipe delivery catwalk</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Drilling mud system machinery:</td>
<td></td>
</tr>
<tr>
<td>3.2.1</td>
<td>shale shakers (hydrocyclones)</td>
<td></td>
</tr>
<tr>
<td>3.2.2</td>
<td>mechanical mixers</td>
<td></td>
</tr>
<tr>
<td>3.2.3</td>
<td>drilling mud degasifiers</td>
<td></td>
</tr>
<tr>
<td>3.2.4</td>
<td>screw centrifuges</td>
<td></td>
</tr>
<tr>
<td>3.2.5</td>
<td>free-flowing component reception devices</td>
<td></td>
</tr>
<tr>
<td>3.2.6</td>
<td>chemical solution preparation and feeding devices</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Gas-pumping compressors:</td>
<td></td>
</tr>
<tr>
<td>3.3.1</td>
<td>piston</td>
<td></td>
</tr>
<tr>
<td>3.3.2</td>
<td>centrifugal/axial</td>
<td></td>
</tr>
<tr>
<td>3.3.3</td>
<td>turbo expanders</td>
<td></td>
</tr>
<tr>
<td>3.3.4</td>
<td>other</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st annual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd annual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3rd annual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th annual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st special</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd special</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3rd special</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4th special</td>
</tr>
</tbody>
</table>
Drilling System Pumps:

<table>
<thead>
<tr>
<th>Nos.</th>
<th>Item to be surveyed</th>
<th>1st annual</th>
<th>2nd annual</th>
<th>3rd annual</th>
<th>4th annual</th>
<th>1st special</th>
<th>2nd annual</th>
<th>3rd annual</th>
<th>4th annual</th>
<th>1st special</th>
<th>2nd annual</th>
<th>3rd annual</th>
<th>4th annual</th>
<th>1st special</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>piston (plunger) pumps</td>
<td>P</td>
</tr>
<tr>
<td>3.4.2</td>
<td>centrifugal pumps</td>
<td>P</td>
</tr>
<tr>
<td>3.4.3</td>
<td>other</td>
<td>P</td>
</tr>
<tr>
<td>3.5</td>
<td>Cementing System Pumps:</td>
<td>P</td>
</tr>
<tr>
<td>3.5.1</td>
<td>centrifugal pumps</td>
<td>P</td>
</tr>
<tr>
<td>3.5.2</td>
<td>piston (plunger) pumps</td>
<td>P</td>
</tr>
<tr>
<td>3.5.3</td>
<td>membrane pumps</td>
<td>P</td>
</tr>
<tr>
<td>3.5.4</td>
<td>other</td>
<td>P</td>
</tr>
<tr>
<td>3.6.1</td>
<td>centrifugal pumps</td>
<td>P</td>
</tr>
<tr>
<td>3.6.2</td>
<td>piston (plunger) pumps</td>
<td>P</td>
</tr>
<tr>
<td>3.6.3</td>
<td>screw pumps</td>
<td>P</td>
</tr>
<tr>
<td>3.6.4</td>
<td>other</td>
<td>P</td>
</tr>
<tr>
<td>3.7</td>
<td>Pumps of well fluid treatment and offloading systems:</td>
<td>P</td>
</tr>
<tr>
<td>3.7.1</td>
<td>piston (plunger) pumps</td>
<td>P</td>
</tr>
<tr>
<td>3.7.2</td>
<td>centrifugal pumps</td>
<td>P</td>
</tr>
<tr>
<td>3.8</td>
<td>Other pumps</td>
<td>P</td>
</tr>
<tr>
<td>3.9.1</td>
<td>drilling systems (top drive, rotor, drawworks)</td>
<td>P</td>
</tr>
<tr>
<td>3.9.2</td>
<td>automatic pipe handling systems</td>
<td>P</td>
</tr>
<tr>
<td>3.9.3</td>
<td>displacement system for derrick substructures with drilling derrick and support frame</td>
<td>P</td>
</tr>
<tr>
<td>3.9.4</td>
<td>displacement systems for blowout equipment and wellhead components</td>
<td>P</td>
</tr>
<tr>
<td>3.9.5</td>
<td>pipe handling mechanisms, tongs and cranes</td>
<td>P</td>
</tr>
<tr>
<td>3.9.6</td>
<td>control systems for wellhead components and shut-off valves</td>
<td>P</td>
</tr>
<tr>
<td>3.9.7</td>
<td>control systems for blowout equipment</td>
<td>P</td>
</tr>
<tr>
<td>3.10.1</td>
<td>displacement system for derrick substructures with drilling derrick and support frame</td>
<td>P</td>
</tr>
<tr>
<td>3.10.2</td>
<td>displacement systems for blowout equipment and wellhead components</td>
<td>P</td>
</tr>
<tr>
<td>3.10.3</td>
<td>hydraulic pneumatic drives</td>
<td>P</td>
</tr>
<tr>
<td>3.10.4</td>
<td>other hydraulic cylinders</td>
<td>P</td>
</tr>
<tr>
<td>Nos.</td>
<td>Item to be surveyed</td>
<td>Surveys of oil-and-gas equipment</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st annual</td>
<td>2nd annual</td>
<td>3rd annual</td>
<td>4th annual</td>
<td>1st special</td>
<td>2nd special</td>
<td>3rd special</td>
<td>4th special</td>
<td>1st annual</td>
<td>2nd annual</td>
<td>3rd annual</td>
<td>4th annual</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>Hydropneumatic accumulators of:</td>
<td></td>
</tr>
<tr>
<td>3.11.1</td>
<td>blowout equipment</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>OP</td>
</tr>
<tr>
<td>3.11.2</td>
<td>string tensioning and displacement compensation system</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>OP</td>
</tr>
<tr>
<td>3.11.3</td>
<td>other hydraulic accumulators</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>OP</td>
</tr>
<tr>
<td>3.12</td>
<td>Hydraulic lifting jacks:</td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>Modular machinery installations</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>OPM</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>OPM</td>
</tr>
<tr>
<td>4.1</td>
<td>4 HEAT EXCHANGERS AND PRESSURE VESSELS</td>
<td></td>
</tr>
<tr>
<td>4.1.1</td>
<td>Separators of:</td>
<td></td>
</tr>
<tr>
<td>4.1.1.1</td>
<td>drilling mud systems</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OPHM</td>
</tr>
<tr>
<td>4.1.1.2</td>
<td>oil treatment systems</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OPHM</td>
</tr>
<tr>
<td>4.1.1.3</td>
<td>gas/condensate treatment systems</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OPHM</td>
</tr>
<tr>
<td>4.2</td>
<td>Electrical dehydrators</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OPHM</td>
</tr>
<tr>
<td>4.3</td>
<td>Desalters</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OPHM</td>
</tr>
<tr>
<td>4.4</td>
<td>Mass exchanger columns</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OPHM</td>
</tr>
<tr>
<td>4.5</td>
<td>Pig launching/receiving systems:</td>
<td></td>
</tr>
<tr>
<td>4.5.1</td>
<td>launchers/receivers</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>4.5.2</td>
<td>vessels and tanks</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>4.6</td>
<td>Heat exchangers:</td>
<td></td>
</tr>
<tr>
<td>4.6.1</td>
<td>plate-type heat exchangers</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OPHM</td>
</tr>
<tr>
<td>4.6.2</td>
<td>shell-and-tube heat exchangers</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OPHM</td>
</tr>
<tr>
<td>4.6.3</td>
<td>capacitive heat exchangers</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OPHM</td>
</tr>
<tr>
<td>4.7</td>
<td>Direct-fired heaters</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>4.8</td>
<td>Process water treatment plants</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>4.9</td>
<td>Process vessels of systems for storing and transporting free-flowing materials of the drilling rig</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Modular process units</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OM</td>
<td>C</td>
<td>C</td>
<td>OM</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OM</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>4.11</td>
<td>Tanks</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OM</td>
<td>C</td>
<td>C</td>
<td>OM</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OM</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>4.11.1</td>
<td>open drain tanks</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OM</td>
<td>C</td>
<td>C</td>
<td>OM</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OM</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>4.11.2</td>
<td>closed drain tanks</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OPMH</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OPMH</td>
</tr>
<tr>
<td>4.11.3</td>
<td>discharge tanks</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OPMH</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>OP</td>
<td>OPMH</td>
</tr>
<tr>
<td>5.1</td>
<td>Electrical drives of shut-off and regulating fittings</td>
<td>O</td>
<td>O</td>
<td>OPM</td>
<td>O</td>
<td>O</td>
<td>OPM</td>
<td>O</td>
<td>O</td>
<td>OPM</td>
<td>O</td>
<td>O</td>
<td>OPM</td>
<td>O</td>
</tr>
</tbody>
</table>
6.4.10 CARGO-HANDLING GEAR

6.1 Winches:
- 6.1.1 drawworks
- 6.1.2 drilling floor, including hydraulic catheads
- 6.1.3 personnel raising winch
- 6.1.4 general purpose winch
- 6.1.5 block-and-tackle/pulley for blowout equipment displacement
- 6.1.6 stabbing board/runaround winch
- 6.1.7 well logging hoists

6.2 Pipe handling/displacement arrangements:
- 6.2.1 horizontal pipe handling machines
- 6.2.2 vertical pipe handling machines
- 6.2.3 pipe manipulators
- 6.2.4 pipe setting system overhead cranes
- 6.2.5 pipe deck cranes
- 6.2.6 cross-members for pipes

6.3 Riser handling systems

6.4 Overhead and pedestal cranes:
- 6.4.1 blowout equipment overhead cranes
- 6.4.2 wellhead component overhead cranes
- 6.4.3 deck pedestal cranes
- 6.4.4 beam cranes

6.5 Others:
- 6.5.1 stage of a drilling derrick
- 6.5.2 basket for servicing a drilling well
- 6.5.3 block-and-tackle unit
- 6.5.4 top drive elevator
- 6.5.5 crown block with pulleys
- 6.5.6 hook/block-hook
- 6.5.7 deadlock anchor
- 6.5.8 wireline spooling and storage device
- 6.5.9 pneumatic breaker
- 6.5.10 air-power slip

7 AUTOMATION

<table>
<thead>
<tr>
<th>No.</th>
<th>Item to be surveyed</th>
<th>Surveys of oil-and-gas equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st annual</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>6.2</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>6.3</td>
<td></td>
<td>OPMI</td>
</tr>
<tr>
<td>6.4</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>6.5</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>6.6</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>6.7</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>6.8</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>6.9</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>6.10</td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>7.1</td>
<td>Automated process control system, emergency shutdown (ESD) system</td>
<td>MR</td>
</tr>
</tbody>
</table>

Table 10.2.7 — continued
Automated control system of drilling unit, emergency shutdown (ESD) system:

- **drilling equipment control system**
- **local control systems, including control panel**
- **driller’s control console**

<table>
<thead>
<tr>
<th>Nos.</th>
<th>Item to be surveyed</th>
<th>Surveys of oil-and-gas equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Automated control system of drilling unit, emergency shutdown (ESD) system:</td>
<td></td>
</tr>
<tr>
<td>7.2.1</td>
<td>drilling equipment control system</td>
<td>MP MP MP MP MP MP MP MP MP MP MP</td>
</tr>
<tr>
<td>7.2.2</td>
<td>local control systems, including control panel</td>
<td>MP MP MP MP MP MP MP MP MP MP MP</td>
</tr>
<tr>
<td>7.2.3</td>
<td>driller’s control console</td>
<td>MP MP MP MP MP MP MP MP MP MP</td>
</tr>
</tbody>
</table>

1. Residual thickness measurements, beginning from the 3rd survey.
3. **H** — at least once in 8 years; **O** — sampling inspection.
4. **O** — at least once in 8 years at a corrosion rate of up to 0.1 mm/year, and at least once in 6 years, if the latter is over > 0.1 mm/year; **H** — at least once in 8 years.
5. **O** — at least once in 4 years at a corrosion rate up to 0.1 mm/year, and at least once in 3 years, if the latter is > 0.1 mm/year; **H** — at least once in 8 years at a corrosion rate up to 0.1 mm/year, and at least once in 6 years, if the latter is > 0.1 mm/year.
6. Systems shall be degassed. Where necessary, measurements of residual thickness and hydraulic tests shall be conducted on the Surveyor’s to the Register demand.
7. On completing well drilling, the blowout equipment installed on a FOP may be dismounted and removed from the platform.
8. When estimated service life is over.
9. Measurements of the residual thickness of crane structures, wear of cargo handling gear components and cable defects.
11 GENERAL REQUIREMENTS FOR DESIGN OF THE FPU/MODU/FOP OIL-AND-GAS EQUIPMENT

11.1 During design of the FPU/MODU/FOP oil-and-gas equipment, all the mandatory procedures prescribed by the national supervisory bodies shall be followed.

11.2 Systems, arrangements and machinery, comprising the part of the FPU/MODU/FOP oil-and-gas equipment, shall retain their operability under the environmental conditions specified in 1.3, Part II "Drilling Systems and Equipment" of the OGE Rules.

11.3 Class of the oil-and-gas equipment, installed on the open decks and platforms, shall correspond to the climatic conditions in the operational area.

11.4 During design of the FPU/MODU/FOP oil-and-gas equipment the following basic factors shall be considered:
 - a fault or malfunction of any system component shall not cause damage to or a fault in associated systems, FPU/MODU/FOP on the whole and damage to the environment;
 - all the equipment shall be provided with the required means of monitoring and control, including the emergency ones;
 - in case of an accident, the equipment shall continue functioning to provide the safety of the system or FPU/MODU/FOP on the whole;
 - safety systems and their controls, hydraulic lines, cabling and other necessary equipment shall be safely located or properly protected to retain their operability within the time period sufficient for the accident localization or elimination;
 - measures shall be taken to protect the drilling rig equipment and systems against extreme loads associated with the operation or transportation of FPU/MODU/FOP at sea;
 - the safety system components shall be designed in such a way that the typical failures (open-circuit fault, power failure, etc.) do not effect their operability;
 - FPU/MODU/FOP oil-and-gas equipment and systems shall be divided into single process units (modules) to minimize the explosion hazard of the units and the entire system;
 - FPU/MODU/FOP oil-and-gas equipment arrangements and systems shall be designed for a service life of at least 20 years, unless otherwise specified by the customer.

11.5 During development of the oil-and-gas equipment design, the extent of construction-and-assembling operations on FPU/MODU/FOP at sea shall be minimal.

11.6 In order to prevent freezing of the equipment, arrangements and piping at a low temperature of ambient air, special measures shall be taken, which include, but are not limited to the following:
 - exclusion of "pockets" and dead-end sections at pipelines; all the pipelines directing freezing liquids shall be self-draining or the measures shall be provided to ensure their emptying;
 - provision of the liquid circulation in lines, which cannot be emptied, but wherein the liquid may be motionless (fire-fighting water supply lines, cooling water lines, etc.);
 - thermal insulation of the open sections of equipment and pipelines;
 - heating, in addition to thermal insulation, of the single sections of pipelines or equipment, heat sources may be the external (heating cables, steam tracers on pipelines) or internal components of the equipment (heating jackets, coils);
 - laying in closed casings in combination with the pipelines having a higher temperature where allowed;
 - use of heat-insulating layers on measuring, monitoring and control devices;
 - use of wind-proof walls and shelters for reducing heat losses;
 - addition of chemical agents to reduce the liquid freezing point.

11.7 Heating shall be provided of the following units and equipment located in spaces, where heating is not required, whose uninterruptible operation is necessary during start, normal operation and tripping. These include, but are not limited to, the following:
 - equipment and piping with the minimal fluid flow, which is inadequate to maintain a temperature therein above a freezing point;
hydraulic seals;
discharge and safety valves and their flowlines;
piping and equipment, which may contain moisture during their start or deviations from operating conditions;
non-drainable low points and dead-end (stagnant) sections of piping and equipment;
monitoring and measurement devices, their lines, which reliable operation depends on the ambient
temperature;
drain lines of piping, tanks, pumps and other equipment containing freezing liquids;
lubricating systems and seals on a hydrocarbon basis (where necessary).

11.8 The effect of weight change due to snow accumulation and ice formation on structures and
equipment, and also potential resonance oscillations due to rotating equipment (pumps, compressors, gas
turbines) shall be taken into account. Where necessary, special measures shall be taken to remove snow
and ice from the structure and equipment components.

11.9 The single units (modules) of oil-and-gas equipment shall be tested to a maximum extent at the
manufacturer's so that interunit mounting and precommissioning operations during the FPU/MODU/FOP
final assembly are minimized.

11.10 The layout of machinery and equipment shall comply with the requirements in Part VII
"Machinery Installations and Machinery" and Part VIII "Systems and Piping" of the MODU/FOP Rules.

11.11 Machinery spaces containing oil-and-gas equipment mechanisms and arrangements shall comply
with the requirements of 2.6, Part VII "Machinery Installations and Machinery" of the MODU/FOP Rules.

11.12 The lighting system for oil-and-gas equipment locations shall comply with the requirements of
Section 6, Part X "Electrical Equipment" of the MODU/FOP Rules.

11.13 The vibration levels of oil-and-gas equipment arrangements and mechanisms shall comply with
the requirements of 2.7, Part VII "Machinery Installations and Machinery" of the MODU/FOP Rules.

11.14 Temperature of the outer surfaces of equipment and casings of heat-insulating coatings shall not
exceed 80 % of the self-ignition temperature of the most explosive and fire-hazardous product, and
shall not be higher than 45 °C indoors and 60 °C outdoors in the areas accessible for attending personnel.

11.15 Safety systems shall provide two independent levels of equipment protection to prevent an
emergency situation and minimize the effect of failures on the accident consequences. Such protection
levels shall be provided by the functionally-various types of safety devices to increase a probability of
preventing accidents or reducing their consequences.

11.16 Single mechanisms shall be spaced at least 1 m apart with passages of at least 0,75 m (at least 0,5 m
for modular units).

11.17 The items, whose maintenance requires a worker to climb to a height of up to 0,75 m shall be
provided with steps, and to a height of over 0,75 m, with staircases with railing.

11.18 Mechanical transmissions (chain, cardan, gear, etc.), clutches, pulleys, other rotating and moving
oil-and-gas equipment components, as well as their protrusions shall be provided with quick removable
and convenient for mounting guards.
12 GENERAL REQUIREMENTS FOR MODULAR EQUIPMENT

12.1 Modular equipment shall provide the safe and accident-free process depending on its purpose.
12.2 Modular equipment shall be designed with due regard to the requirements of 11.2 and 11.3.
12.3 The modular equipment structure, built-in process and auxiliary equipment, systems (heating, ventilation and gas detection, lighting, automation, fire extinguishing, water supply, sewage, etc.) shall comply with the requirements of Section 11.
12.4 When installing modular equipment in hazardous zones, the requirements of Part IX "Special Requirements for Ensuring Explosion and Fire Safety" shall be taken into account.
12.5 The unit structure shall be technologically advanced, suitable for repair and shall provide its serviceability with specified parameters during the lifetime indicated in the technical documentation of the unit.
12.6 Horizontal type equipment and piping in the unit shall be installed with an inclination towards the drainage side. Minimum inclinations shall be the following:
 for liquid: 0,002;
 for gaseous substances (condensible): 0,003;
 for highly-viscous and freezing substances: 0,02.
 In technically justified cases, installation with inclinations other than specified or without inclination is permitted, provided that appropriate measures are taken to completely empty the equipment and piping of the unit into the drainage system.
12.7 Number of detachable connections on the installed equipment shall be minimum. Detachable joints may be used to connect shut-off control and safety valves, electric equipment, instrumentation and automation devices, as well as to connect the unit to external systems, etc.
12.8 The modular equipment design shall compensate temperature stresses in the equipment and piping due to using specific expansion joints, pipe laying profile or other applicable methods.
12.9 The design documentation shall specify attachment points of equipment and piping to be loosened (tightened) during mounting and transportation.
12.10 Valves shall be located in places accessible for maintenance, according to the process sequence, with regard to their service conditions.
12.11 Controls (handwheels, handles) of hand valves shall be located at a height of max 1,8 m above the deck or service platform. For the valves installed on vertical pipelines (standpipes), this distance is from the handwheel axis or the handle end.
12.12 If deemed technically reasonable, valves may be installed outside the service platforms. In such cases, the handwheel or handle shall be located at a height of max 1,5 m, and the horizontal distance from the service platform shall be min 0,3 m. The distance between protruding parts of valves located on two neighbouring pipelines in the unit, shall be min 0,05 m.
12.13 The unit arrangements shall have a rigid structure for commissioning without disassembly, audit, strength and density tests after transportation, rigging and mounting.
12.14 The unit dimensions shall be determined by the transportation conditions.
12.15 In addition to the requirements of 12.13, units with moving parts shall maintain the alignment of axes of bearings (rotors), interconnected units, as well as maintain the rated clearances between moving and fixed parts of the units.
12.16 Provision shall be made for the possibility of using frames as foundations of unit arrangements installed on the structure of offshore oil-and-gas facilities.
12.17 Structure materials, as well as operating agents and lubricants used in the modular equipment, shall provide normal service and ensure start in the cold condition (using specific heating arrangements) in the climatic conditions of the service area.
PART II. DRILLING RIG SYSTEMS AND EQUIPMENT

1 GENERAL

1.1 APPLICATION

1.1.1 The requirements of the present Part apply to the drilling rig, which means the equipment (technical facilities) installed on FPU/MODU/FOP and designed for performance of the operation cycle associated with well construction on a sea shelf.

1.1.2 The items of the Register technical supervision, as regards the drilling equipment, are given in the Nomenclature in Section 7, Part I "General Regulations for Technical Supervision".
1.2 GENERAL REQUIREMENTS

1.2.1 Components of drilling equipment: technical facilities, systems, machinery, etc. listed in the Nomenclature are subject to confirmation of compliance with the requirements of the OGE Rules with issue of the Register documents specified in 8.1.7, Part I "General Regulations for Technical Supervision".

1.2.2 Where the results of the technical supervision during construction of FPU/MODU/FOP show that the drilling equipment meets the requirements of the OGE Rules, FPU/MODU/FOP shall be assigned descriptive notations added to the Register class notation in compliance with 6.3, Part I "General Regulations for Technical Supervision".

1.2.3 The drilling equipment installed on FPU/MODU/FOP under the Register technical supervision is subject to periodical surveys in service with the aim to confirm their compliance with the requirements of the OGE Rules and to confirm/extend the FPU/MODU/FOP class with regard to the oil-and-gas equipment in compliance with the requirements of Section 10, Part I "General Regulations for Technical Supervision".

1.2.4 Electrical equipment, instrumentation and automated control systems, lighting, alarm and communication means of the drilling rig intended for use in hazardous areas shall comply with the requirements of Part IX "Special Requirements for Ensuring Explosion and Fire Safety".

1.2.5 All components of the drilling equipment systems and auxiliary systems, containing inflammable liquids, toxic substances or substances under high pressure, shall be provided with shut-off devices and shall be properly isolated from other systems.

1.2.6 The pneumatic system of the drilling unit (piping, cocks, connections, etc.) shall be tested by the manufacturer under pressure exceeding by 1.5 times the working pressure. After mounting at the drilling site, as well as after repairs, the pneumatic system shall be tested under pressure exceeding by 1.25 times the working pressure, but not less than by 0.3 MPa.

1.2.7 System shall be provided for gathering and disposal of liquid from the rig floor; the gathering system shall be isolated from the hazardous drainage system.

1.2.8 All the enclosed spaces of the drilling unit wherein flammable mixtures may be formed or penetrate shall be provided with gas detection and alarm systems and with plenum-exhaust ventilation, ensuring an air change in compliance with the requirements of the standards recognized by the Register. The ventilation shall be continuously operated from opening-up of the producing horizon till completion of the well construction.

When the hydrocarbon concentration in the air reaches 20 % of lower flame limit (LFL) in explosion-hazardous spaces a warning alarm shall be activated in the corresponding space and in the main machinery control room (main control station), and in case of further concentration increase up to 50 % of LFL, the equipment and machinery shall be completely stopped.

In case of 10 % of LFL in compressor plant rooms on air inlets in explosion-hazardous spaces a warning alarm shall be activated in the corresponding area and in the main machinery control room (main control station), and in case of 20 % of LFL, the non-explosion-proof equipment and machinery shall be stopped.

1.2.9 Machinery, piping systems, cargo-handling gear, heat exchangers, pressure vessels, materials and means of automation forming the parts of the drilling rig shall comply with the requirements of Parts IV — IX.
1.3 OPERATING CONDITIONS

1.3.1 All machinery, equipment and systems of the FPU/MODU oil-and-gas equipment shall remain operative under the following conditions.

1.3.1.1 Static conditions:
.1 for semi-submersible and submersible MODU, when inclined up to 15° inclusive in any direction;
.2 for self-elevating MODU, when inclined up to 10° inclusive in any direction;
.3 for drilling ships, when heeled to 15° and simultaneously trimmed to 5°.

1.3.1.2 Dynamic conditions for self-propelled MODU and drilling ships:
.1 for semi-submersible and submersible MODU, when inclined up to 22,5° inclusive in any direction;
.2 for self-elevating MODU, when inclined up to 15° inclusive in any direction;
.3 for drilling ships, when rolled to 22,5° and simultaneously pitched to 7,5°.

1.3.2 Emergency sources of power shall remain operative under the following conditions:
.1 for semi-submersible and submersible MODU, when inclined up to 25° inclusive in any direction;
.2 for self-elevating MODU, when inclined up to 15° inclusive in any direction;
.3 for drilling ships, when rolled to 22,5° and simultaneously pitched to 10°.

1.3.3 The values of heel angles given in 1.3.1 and 1.3.2 apply to inclinations by any ship's side and the values of trimm and pitch angles apply to inclinations by the bow or by the stern. In technically justified cases with regard to the type, size and operating conditions of FPU/MODU/FOP, inclinations other than specified in 1.3.1 and 1.3.2 may be permitted. Such alterations together with technical justifications shall be approved by the Register.
1.4 REQUIREMENTS FOR ARRANGEMENT OF EQUIPMENT

1.4.1 Machinery and equipment shall be arranged in compliance with the requirements of Section 4, Part VII "Machinery Installations" of the Rules for the Classification and Construction of Sea-Going Ships, as far as they are acceptable and sufficient.

1.4.2 The drilling rig equipment shall be located as far as possible from accommodation spaces and other systems of FPU/MODU/FOP, which are directly essential for the safety of these structures and prevention of environmental pollution.

1.4.3 Good visibility with straight view of the derrick floor shall be provided from a driller's cabin on FPU/MODU/FOP and a video surveillance system shall be installed to monitor operation of the drilling rig equipment, situated outside the straight view from the driller's cabin.

1.4.4 Essential equipment of the FPU/MODU/FOP drilling rig shall be arranged and designed in such a way that probability of damage caused by falling objects or handled cargoes is kept to a minimum.

1.4.5 In addition to the requirements of 11.4, Part I "General Regulations for Technical Supervision", equipment having moving parts or surface heated to a temperature above 45 °C shall be properly isolated and guarded to avoid the contact with the attending personnel.

1.4.6 Means shall be provided for mechanization of operations associated with picking-up and laying-down of pipes, as well as with maintenance (replacement) of hydraulic units of the drilling pumps. Cargo-handling gear shall be remotely controlled.

To lift high-wear parts and assemblies with weight of more than 300 N, the cargo-handling gear (tackle, etc.) shall be installed.

The travelling and fixed ends of the drilling line shall not come in contact with the drilling derrick elements.

1.4.7 Lighting fixtures fitted on the FPU/MODU/FOP drilling units shall provide the following illumination intensity:

100 lx for rotary table;
30 lx for travel path of travelling block;
75 lx for derrick and pumping unit rooms;
75 lx for BOP unit;
10 lx for ladders, flights, companionways, catwalk.
2 REQUIREMENTS FOR THE DRILLING RIG EQUIPMENT AND SYSTEMS

2.1 DRILLING DERRICK AND ITS EQUIPMENT

2.1.1 Requirements for design loads.

2.1.1.1 Drilling derricks, derrick substructures and support frames shall be designed for strength and with regard to the following conditions and design loads:

.1 maximum design static hook load (allowable hook load) for a certain ratio of the block-and-tackle system string-up (resulting from the maximum process hook load without regard to wind loads when there are no drill pipes on the pipe setback);

.2 maximum design wind velocity without regard to the complete set of drill pipes on the pipe setback;

.3 design static hook load depending on the wind velocity, which varies between zero and the maximum allowable value with regard to complete set of drill pipes on the pipe setback at the maximum block-and-tackle system string-up;

.4 maximum design static load on the rotary table foundation;

.5 maximum design static load on the pipe setback and rotary table foundation;

.6 derrick substructure and derricks of offshore drilling units shall be designed for loads occurring during sea passage;

.7 derrick structures shall be designed to withstand the inertial load during movement depending on the mass of the drill pipe stands behind the stabbing fingers.

2.1.1.2 Drilling derricks, derrick substructures and FPU/MODU support frames of derrick substructure shall be designed for the above mentioned loads in combination with dynamic loads induced by the FPU/MODU motions under the following operating conditions:

- round-trip operations with the drill string positioned in the well;
- running-in of the casing strings with the drill string positioned on the pipe setback;
- severe storm condition with the drill string positioned in the well;
- sea passage/transit condition.

2.1.1.3 Drilling derricks, derrick substructures and support frames of derrick substructure of FOP located in the seismic activity areas shall be designed for strength and stability, proceeding from the seismic activity conditions of the area concerned.

2.1.1.4 During design of the drilling derricks, derrick substructures and support frames of derrick substructures of FPU/MODU/FOP, except for indicated in 2.1.1, the concept of dangerous (limit) states shall be used. Categories of dangerous (limit) states are indicated in 2.4, Part II "Hull" of the MODU/FOP Rules and GOST R 54483.

2.1.2 General requirements for the drilling derrick design.

2.1.2.1 Materials and products used for manufacture of structures of the FPU/MODU/FOP drilling derricks and derrick substructures shall meet the requirements of Part XII "Materials" of the MODU/FOP Rules. In technically justified cases, use may be made of the materials and products complying with the requirements of the normative and technical documents of foreign classification societies, other recognized national and international rules and standards. Such use shall be approved by the Register.

2.1.2.2 Requirements for welding of metal structures of the FPU/MODU/FOP drilling derricks and derrick substructures shall meet the requirements of Part XIII "Welding" of the MODU/FOP Rules.

2.1.2.3 Metal structure of the drilling derrick made of loop-type material shall preclude water accumulation in its elements.

2.1.2.4 In the design of drilling derricks on FPU/MODU/FOP provision shall be made for the following:

- anchoring devices of roller (sheave) for mounting/dismounting of the crown block and its sections;
places for fastening safe navigation means;
places for installation of units for fastening power tongs, suspension ropes, cargo rope of auxiliary
winch, rope of suspended air and hydraulic tongs for making-up of the casing pipes;
platform for crown block maintenance and drilling hose replacement;
platform for maintenance of the connection head — drilling hose connection;
derrickman's working platform with arrangement for his fast evacuation outside the derrick in case of
emergency situation at the wellhead;
damper of the drilling line travelling end;
limiter of the travelling block rising height;
workstation heating system;
heated pipe setbacks with drilling and sewage water gathering system;
platform for maintenance and replacement of the flexible drilling hose on the manifold standpipe;
device for changing vertical position of power tongs;
anchoring device of power tongs' work and safety lines.

2.1.2.5 During mechanized round-trip operations without participation of the derrickman, a platform
shall be provided for maintenance of the mechanisms of the automatic tripping device.

2.1.2.6 The metal floor of the derrickman cradle shall be designed for a load not less than 1300 N and
provided with a railing sheathed throughout its entire height. The height of the railing shall not be less than 1,0 m.
In order to prevent falling out of the cradle(s), the latter shall be provided with a safety device for securing
to the mast.

2.1.2.7 The drilling derrick shall be provided with step ladders of not less than 600 mm in width with
inertial or other type devices for the derrickman safe going-up and -down or with tunnel-type ladders.
Tunnel-type ladders shall be metal, minimum 0,6 m wide, and shall have safety arcs, starting from a
height of 2 m, with a radius of 0,35 — 0,4 m, fixed between each other with strips. The arcs shall be
located at a distance of max 0,8 m from each other. The distance from the most distant arc point to the
stairs shall be 0,7 — 0,8 m.

2.1.2.8 For going-up on the platforms located at a height of 250 to 750 mm, steps and staircases shall be
provided and for going-up on the platforms located at a height more than 750 mm, stairways with railing.
The height of railing fitted on the landing platforms, service platforms and ladders at a height more
than 2,5 m shall not be less than 1250 mm with two strings and toe board of not less than 150 mm in height
adjoining the flooring. Thus, the minimum width of passages and gangways shall not be less than 500 mm
including that on the stabbing board between the platforms.

2.1.2.9 The derrickman's working platform shall be fitted with hinge pins to rack drill pipe stands
secured by a rope to prevent falling-down in the event of breakage and with vertically movable cradle to
provide safe handling of drill pipe stands having deviation from the mean length (25, 27 and 36 m).

2.1.2.10 The derrickman's working platform protruding into the derrick or mast interior and fitted with
a cap, shall not be less than 750 mm in width with boards of not less than 150 mm. The platform shall be
provided with two safety slings. Railing of the above mentioned sizes or shelters shall be provided along
the entire remaining perimeter of the platform.

2.1.2.11 Other working platforms for maintenance of the equipment elements at a height of 1800 mm
and more shall be at least 750 mm in width with useful area not less than 0,6 m² and also shall be provided
with the above-mentioned railing, boards and safety slings. Slings shall be provided in areas where no
railing is fitted. All platforms shall have non-slip flooring.

2.1.2.12 The drilling derrick shall be marked with a nameplate containing the following information:
manufacturer's name;
manufacturer's address;
manufacture date (month, year);
serial number;
height;
maximum designed static hook load;
maximum designed wind speed;
specifications and their revision for the structure concerned.

The marking shall be embossed or made in the form of a stamp. The nameplate shall be properly secured to the structure in a visible place.
2.2 DERRICK SUBSTRUCTURE

2.2.1 Derrick substructure shall be designed for strength with regard to the loads stated in 2.1.1.

2.2.2 Design of the drilling derrick substructure shall provide for placement and mounting of the following:

- marine riser on the wellhead;
- rotary table at the derrick's floor level;
- automation and mechanization means and control panels;
- heated pipe setback with the drilling mud drainage;
- deadline anchor;
- device for changing vertical position of power tongs;
- power tongs' work and safety line anchor;
- shot pits for making a connection, installation of a square kelly and the drill collars;
- BOP unit on the wellhead above the deck level without any additional work with the metal structures of the derrick substructure;
- dismounting of the derrick substructure with the Christmas tree or a part thereof installed;
- devices for mechanization of operations associated with installation of the square kelly and drill collars into shot pits.

2.2.3 Supports of the derrick substructure shall be designed in such a way as to ensure its secure attachment to the supporting frame with regard to the design loads stated in 2.1.1.

2.2.4 The drilling substructure shall be marked with a nameplate containing the following information:

- manufacturer's name;
- manufacturer's address;
- manufacture date (month, year);
- serial number;
- height;
- maximum designed static rotor load;
- maximum designed pipe setback load;
- maximum combined designed static load on the rotor and stands behind the stabbing finger;
- specifications and their revision for the substructure concerned.

The marking shall be embossed or made in the form of a stamp. The nameplate shall be properly secured to the structure in a visible place.
2.3 SUPPORT FRAME

2.3.1 Support frame shall be designed for strength with regard to the loads stated in 2.1.1.

2.3.2 Structural drawings and strength analysis of displacement mechanism for support frame and derrick substructure shall be submitted.

2.3.3 The materials and products used for manufacture of structures of the FPU/MODU/FOP support frame of derrick substructure shall meet the requirements of Part XII "Materials" of the MODU/FOP Rules. The use of other materials and products complying with the requirements of the normative and technical documents of foreign classification societies, other recognized national and international regulations, rules and standards may be allowed when substantiation is presented that these materials and products are as effective as those specified in the RS rules and provide the safe operation of oil-and-gas equipment.

2.3.4 Requirements for welding of metal structures of the FPU/MODU/FOP support frame of derrick substructure shall meet the requirements of Part VIII "Materials and Welding".
2.4 DRILLING CONTROL SYSTEM

2.4.1 Drilling monitoring and control systems shall be integrated into the automated process control system for emergency shutdowns in case of oil, gas and water shows in the well, extension of hazardous zones and outbreaks of fire. Information on the well drilling progress may be submitted optionally.

2.4.2 Drilling monitoring and control system shall be provided with uninterruptible power supplies (UPS) complying with the requirements of 3.6, Part X "Electrical Equipment" of the MODU/FOP Rules.

2.4.3 Provision shall be made for two-way communication between the drilling foreman's office and the main machinery control room main control station and other spaces, which contain the equipment having the effect on the FPU/MODU/FOP safety.

2.4.4 The design of the drilling unit control system shall provide:
- interlock precluding simultaneous actuation of the main and auxiliary drawworks drives;
- interlock of pneumatic slips rise with the rotating rotor and the rotor start-up with the slips risen;
- automatic shutting-down of the drilling pump drives when the pressure in injection line exceeds by 10 % the allowable pressure with simultaneous pressure release;
- interlock precluding actuation of the drawworks drum when the boom of the automatic tripping device is extended, as well as extension of the automatic tripping device boom with the drawworks drum actuated;
- interlock between the automatic tripping device boom and the drawworks, which precludes the movement of the automatic device boom when the travelling block is in the hazardous zone, and vice versa, which precludes the movement of the travelling block into the hazardous zone when the boom is extended.

2.4.5 When an automated measuring system is used during drilling operations, the automated process control system of FPU/MODU/FOP shall contain an appropriate maintenance module for the system concerned.

2.4.6 Technical facilities of the drilling rig shall be monitored and controlled from the driller's cabin. The control system shall provide representation of the following data in the driller's cabin and foreman's office:
- rotor torque and speed;
- top drive torque and speed;
- automatic drilling tongs torque;
- travel speed and position of the travelling block in relation to the rotary table;
- hook load, load on drilling tools;
- drilling mud flow, density and pressure at the well inlet;
- number of double strokes for each drilling pump;
- total number of double strokes of the drilling pumps;
- drilling mud flow, density and volumetric gas content at the well outlet;
- level and volume for each drilling mud and filling-up tank;
- percentage of the returned drilling mud.

2.4.7 The driller's cabin shall be equipped with control facilities providing:
.1 for drilling system actuated by the top drive and electrically driven rotor: control of start and shutdown, regulation and automatic maintenance of the specified speed;
.2 for electrically driven round-trip unit: control of the drawworks start and shutdown, regulation and automatic maintenance of the specified drill string and casing string movement speed during round-trip operations, regulation and automatic maintenance of the specified drilling instrument load, control of disk brakes;
.3 for electrically driven drilling pumps: shutdown, capacity (flow) regulation;
.4 for booster pumps: start and shutdown control;
.5 for manipulator of drill stand setting: control of the drill stand setting process during the round-trip operations;
for automatic drilling tongs: control of the pipe screwing/unscrewing operations;
alarms for hydraulic, cooling and lubricating systems of the drilling equipment;
alarm to indicate lack of electrical equipment protection by pressure filling or pressure purging of the enclosure;
emergency shutdown of drilling equipment in the event of fire and extension of hazardous zones in the drilling rig spaces.

2.4.8 The driller's control panel shall be equipped with the instruments for continuous indication of basic parameters of the drilling process. List of instruments shall provide representation of the following data:
 top drive torque;
 rotor torque;
 power tongs torque;
 hook load;
 discharge manifold pressure;
 drilling mud flow.
2.4.9 Drilling control and monitoring systems shall also comply with the requirements of Section 2, Part IX "Special Requirements for Ensuring Explosion and Fire Safety".
2.4.10 Requirements for controls shall comply with GOST 12.2.064-81.
The force applied to handles of drilling unit winches shall not exceed the following values:
250 N — for handles served by two hands;
150 N — for handles served by one hand.
The brake control lever for drawworks lowering shall have a fixing arrangement capable of holding a maximum cargo in any position.
Symbols for controls shall comply with GOST 12.4.040-78.
2.5 EQUIPMENT FOR ROUND-TRIP OPERATIONS

2.5.1 Drawworks.
 2.5.1.1 The drawworks shall comply with the requirements of 2.4, Part IV "Machinery Installations and Machinery".

2.5.2 Block-and-tackle system.
 2.5.2.1 The block-and-tackle system shall comply with the requirements of 3.1, Part VI "Cargo-Handling Gear".
 2.5.2.2 Wire ropes used to string up cargo-handling gear of the block-and-tackle system shall comply with the requirements of 3.15, Part XIII "Materials" of the Rules for the Classification and Construction of Sea-Going Ships, requirements of the national supervisory bodies and shall be manufactured in compliance with the recognized standards.

2.5.3 Catwalk.
 2.5.3.1 The catwalk shall be installed near the derrick on the gate side, horizontally or with a maximum slope of 1:25 from the derrick, and have a horizontal section of not less than 14 m in length and not less than 2 m in width.
 2.5.3.2 Plating of the catwalk shall be wooden or made of corrugated metal and provided with a chute for picking up and laying down pipes. The slope part of the catwalk shall be constructed in the same manner.
 2.5.3.3 In the installation area of the catwalk a place shall be provided for installation of the pipe racks with the passageways to the catwalk. The pipe racks shall be fitted with detachable or side detachable posts and special gaskets to keep up the pipe stack and provide stacking of pipes to a height not more than 2000 mm.
 2.5.3.4 Companionways of the catwalk onto the deck and entrance to the derrick substructure when the slope exceeds 20° shall be provided with a ladder with railing on one side (outer side in relation to the plating).
 2.5.3.5 The pipe picking up and laying down operations on the catwalk shall be mechanized, the cargo-handling gear shall be remotely controlled.

2.5.4 Cargo-handling gear.
 2.5.4.1 Technical means and equipment of the cargo-handling gear (block-hooks, swivels, etc.) shall comply with the requirements of Part VI "Cargo-Handling Gear".
2.6 DRILL STRING RISER TENSIONING AND DISPLACEMENT COMPENSATION SYSTEMS

2.6.1 General.
2.6.1.1 Tensioning and displacement compensation systems shall provide constant tension force for risers (marine risers), pipelines, ropes at the FPU/MODU vertical displacement.

2.6.1.2 Compensators of the following types shall be used:
 .1 compensators installed on the travelling block (block-hook) of the block-and-tackle system;
 .2 compensators installed on the crown blocks.

2.6.1.3 Receivers of the tensioning and displacement compensation systems shall be separated from one another by shut-off fittings in such a way that a seal failure of a single receiver does not lead to the system overall failure.

2.6.1.4 Working medium flow discharged from compensators shall be directed to a safe side in such a way as not to affect the flexible hoses, components of equipment and structure. A pressure reducing valve may be used to reduce the discharged flow rate.

2.6.1.5 All control panels shall be fitted with safety valves. The discharge lines operated from safety valves shall be self-draining.

2.6.1.6 Total volume of the receivers shall exceed that of the working cylinders. Compressed air shall not contain vapours of combustible liquids and gases.

2.6.1.7 A continuous power supply of the system under all operating modes including emergency mode shall be provided.

2.6.1.8 Hydraulic cylinders shall be designed both for internal pressure loads arising during the system operation, and for external loads resulting from their function as bearing structural members.

2.6.1.9 The guide line tensioning systems shall provide continuous tension of the guide lines at the maximum line speed up to 100 m/min and length change compensation — up to 10 — 12 m.

2.6.2 Riser tensioning and displacement compensation systems.
2.6.2.1 Riser tensioning and displacement compensation systems shall consist of the following foundations components:
 hydraulic power cylinders and assembly of pulleys;
 hydropneumatic accumulators (or compressed air cylinders);
 control panels and piping system;
 high pressure compressor unit;
 vessels for working volume of compressed air;
 vessels for storing compressed air.

2.6.2.2 Riser tensioning systems on the FPU/MODU as well as dynamic positioning systems shall be fitted with anti-recoil systems or relevant systems, if required during drilling operations.

2.6.2.3 The system shall be designed to prevent any significant upward displacements of the riser (e.g. during deepwater drilling) that may cause a damage to the riser and the FPU/MODU structure.

2.6.2.4 The system may be manually operated and shall be integrated in the ESD system.
2.7 DEVICES FOR DRILL PIPE STRING ROTATION

2.7.1 Rotary table.
2.7.1.1 The rotary table shall comply with the requirements of 2.4, Part IV "Machinery Installations and Machinery".

2.7.2 Top drive.
2.7.2.1 The top drive shall provide performance of the following process operations:
rotation of the drill pipe string during wellbore drilling, reaming to nominal size and enlargement;
making-up of drill pipes;
tripping operations with drill pipes, including making drill string connections by drill stands and single pipes;
run-in of the casing string;
crank of the drill string during drilling by downhole motors;
flushing of the well and crank of the drill string during tripping operations;
reciprocating of drill string and flushing of the well in case of accident and trouble elimination.

2.7.2.2 The safe working load of the top power drive shall correspond to that of the drilling rig. The design of the top drive shall provide for installation of monitoring and control facilities of the BOP, sensors of actuator position, wellbore speed and torque.

2.7.2.3 Loads taking structural components of the top power drive shall comply with the requirements of Part VI "Cargo-Handling Gear".

2.7.2.4 The requirements for the top drive shall also comply with 2.5, Part IV "Machinery Installations and Machinery".

2.7.2.5 Electrical equipment of the top power drive shall comply with the requirements of Part IX "Special Requirements for Ensuring Explosion and Fire Safety" of the OGE Rules, Part X "Electrical Equipment" of the MODU/FOP Rules.

2.7.2.6 Hydraulic equipment of the top power drive shall comply with the requirements of Parts VII "Machinery Installations and Machinery" and VIII "Systems and Piping" of the MODU/FOP Rules.
2.8 FREE-FLOWING MATERIAL RECEPTION, STORAGE AND DELIVERY SYSTEM

2.8.1 Free-flowing material reception, storage and delivery system shall provide:
reception of free-flowing materials (cement and weighting agent);
stORAGE and delivery of these materials to the drilling mud and cement mixer;
preparation and weighting up of the drilling mud with dosed delivery of the materials to mixer;
filtration of dusty conveying air to remove suspended particles.

2.8.2 The system contains the following basic equipment:
discharger unit;
cyclone;
air filter;
feeder;
pipelines;
vent pipes with dampers;
air pipes;
tanks for storage of free-flowing materials;
hoses for loading of free-flowing materials.

2.8.3 Requirements for the system.

2.8.3.1 The number and capacity of bunkers for storage of free-flowing materials on FPU/MODU/FOP shall be such that to provide failure-free operation of the drilling rig during the period of self-contained operation (at least 15 days).

2.8.3.2 Spaces shall be equipped with mechanical ventilation system at the rate of at least 2 air changes per hour.

2.8.3.3 Tight quick-demountable couplings shall be used as pipeline joints. Hoses for loading free-flowing materials shall be fitted with standard international type flanges or with other types, if required by the customer.

2.8.3.4 An uninterrupted supply of compressed air to equipment and instrumentation and automated control systems shall be provided.

2.8.3.5 Dew point of the air necessary to convey free-flowing materials shall be lower than the minimum ambient temperature by 10 °C, but not higher than — 40 °C.

2.8.3.6 To clean the air, use shall be made of the filters with efficiency not less than 99 %.

2.8.4 Pneumatic conveying system shall be monitored and controlled from the panel located in the spaces containing tanks for free-flowing materials.

2.8.5 The following data shall be represented to the foreman's office:
.1 for chamber-type feeders of drilling mud and cement components:
level and pressure indication,
alarm to indicate that working pressure, high and low level is reached;
.2 for dischargers of drilling mud and cement components:
weight and working pressure indication,
alarm to indicate that working pressure, high and low weight is reached;
.3 for disk gates:
opening and closing control,
alarm to indicate "open"/"closed" position;
.4 for air cleaning facilities:
filter clogging alarm.
2.9 DRILLING MUD SYSTEM

2.9.1 General requirements for drilling mud system.
2.9.1.1 Instrumentation shall be provided to monitor the following parameters of the drilling mud systems:
- drilling mud flow at the well inlet and outlet;
- pressure in the drilling pump manifold system with recording of values;
- mud level in receiving tanks during well deepening and flushing, and round-trip operations.
2.9.1.2 To collect sludge during cleaning of the drilling mud, special containers (sludge traps) shall be installed. At the location of containers, drip trays or guard coaming of not less than 200 mm in height shall be installed with a liquid drainage into the common sewage collection system.
2.9.1.3 Manifolding system of low pressure drilling and centrifugal pump shall provide:
- the possibility of preparation, treatment and weighting of drilling mud with simultaneous flushing of the well;
- complete drainage and purging of injection line with compressed air.
2.9.1.4 Drip trays and tight guards installed on FPU/MODU/FOP under equipment and other arrangements near the wellheads shall be connected with the common sewage collection system, and provided with accesses and ladders.
2.9.1.5 Drilling hose shall be wounded by a soft wire rope of not less than 12,5 mm in diameter with loops spaced at 1,0 — 1,5 m apart throughout its length.

2.9.2 Requirements for drilling pumps and pipelines.
2.9.2.1 The drilling pumps shall comply with the requirements of 2.3.2, Part IV "Machinery Installations and Machinery".
2.9.2.2 The drilling pumps shall be started and stopped from the local control station and they shall be adjusted and stopped from the driller's control panel and the local control station.
2.9.2.3 Starting shut-off devices of the drilling pumps shall be remotely controlled with the extreme positions of their gates being monitored from the control panel of the driller.
2.9.2.4 A remotely controlled starting gate valve shall be fitted on the injection line, allowing to start pumps without load and to gradually transfer them to the operating mode. The flowline from the starting gate valve shall be straight and securely fastened with an inclination toward the drainage side.
On the drilling rigs with a controllable pump drive, installation of the starting gate valves is not mandatory, but in the flowline a pressure release gate valve shall be provided.
2.9.2.5 Suction lines of the drilling pumps shall not have bends and turns, their diameter shall not be less than 200 mm and length — not more than 5 m.
2.9.2.6 Injection lines shall be laid with the minimum number of turns and bends to prevent erosive wear. Turn of the line shall not change flow direction by more than 90°. The design of the fasteners used for anchoring elements of the injection line (standpipe, etc.) to metal structure shall provide for alignment of the block-and-tackle system in relation to the well axis. Detachable metal clamps shall be installed on the flange joints of the injection line.
2.9.2.7 Injection line shall be provided with a pipe branch with the shut-off device to inject a liquid into the annular space through a four-way union of the BOP.
2.9.2.8 After assembly at the manufacturer's, as well as after repair welding, the injection lines with components and fittings installed thereon shall be tested by hydraulic pressure in compliance with the manufacturer's technical documentation. Otherwise, the test pressure shall be equal to the working pressure multiplied by a safety factor, which value is determined from Table 2.9.2.8. Exposure time shall not be less than 5 min.

<table>
<thead>
<tr>
<th>Working pressure, MPa</th>
<th>< 20</th>
<th>20 — 56</th>
<th>56 — 65</th>
<th>> 65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety factor</td>
<td>1,5</td>
<td>1,4</td>
<td>1,3</td>
<td>1,25</td>
</tr>
</tbody>
</table>
2.9.2.9 The manifold design shall provide rapid discharge of the drilling mud from the manifold with the pump shutdown, due to the optimal inclination angle being provided for the injection line.

2.9.2.10 Design of the elements of hydraulic part of the pump and connections of the injection line shall preclude injure to the attending personnel by liquid jet in the event of a seal failure.

2.9.2.11 Each drilling pump shall be provided with sensors of the gas detection and alarm system.
2.10 CIRCULATION SYSTEM

2.10.1 Circulation system of the drilling rig shall provide gathering and purification of the waste drilling mud, preparation of new mud batches and injection of the purified mud into the well.

2.10.2 The circulation system shall include:
- system for disposal of waste drilling mud from the wellhead;
- mechanical means for purification of the mud (shale shaker, hydraulic cyclones, centrifuges);
- degasifiers;
- vessels for chemical treatment, accumulation and settling of the purified drilling mud;
- arrangements for preparation and feeding of chemical components into the drilling mud;
- low pressure pumps for transfer inside the system (centrifugal, screw, diaphragm pumps);
- jet mixers;
- mechanical mixers of the drilling mud;
- screw conveyors;
- unit for preparation of fresh drilling mud;
- drilling pumps for injection of drilling mud via the injection line into the well;
- piping and hoses;
- manifolds.

2.10.3 To connect subsystems and units of the circulation system, use shall be made of closed-type connecting elements (hoses, flexible joints, closed ditches).

2.10.4 Rotation angles of hydraulic mixers (hydraulic giants) in horizontal and vertical planes shall be limited in such a way that the mud jet remains inside the vessel.

2.10.5 The hydraulic giants and nozzles of the hydraulic mixers shall be readily accessible and quickly detachable. Hinges of the hydraulic giants shall prevent the reaction moment effect on the control handle.

2.10.6 Arrangements shall be made to provide structural protection of the attending personnel against the mud sprinkling from the nozzles of hydraulic cyclones and desanders.

2.10.7 Design of the shale shaker platforms shall provide for safe and convenient maintenance thereof and fast replacement of screens.

2.10.8 Vessels shall be fitted with hatches for discharge of liquid and maintenance. The maintenance hatch shall have dimensions not less than 600×700 mm. The lower edge of the discharge hatch shall be at the level of the vessel bottom.

2.10.9 The circulation system shall incorporate a gauging tank for controllable filling-up of the well, fitted with a level gauge and transfer facilities.
2.11 BLOWOUT EQUIPMENT, WELL MONITORING AND CONTROL SYSTEM

2.11.1 Blowout equipment.
2.11.1.1 Wellhead of the well shall be fitted with remote-controlled BOP unit, which working pressure shall correspond to the expected pressure of the wellhead when closing during uncontrolled flowing.
2.11.1.2 The type of the blowout equipment and casing string head shall comply with the technical documentation approved by the Register.
2.11.1.3 Installation diagram and piping layout of the blowout equipment, choke and kill units shall be developed by a contractor in compliance with the requirements of the national/international standards, approved by the Register and agreed with the customer and supervisory bodies. The blowout equipment shall be operated in accordance with the manufacturers’ specifications approved by the Register.
2.11.1.4 All offshore wells shall be provided with at least four BOPs, including one shear ram-type BOP and one universal BOP.
2.11.1.5 Handwheels for manual locking of the BOP rams shall be installed in the readily accessible location, in shelter, and shall be provided with explosion-proof lighting. The shelter wall shall be marked with the arrows indicating direction of the handwheel rotation, number of revolutions required for closing-up of the BOP.
2.11.1.6 The ram-type BOP shall be periodically checked for opening and closing. Frequency and scope of these checks shall comply with Table 10.2.7, Part I "General Regulations for Technical Supervision".

2.11.2 Blowout equipment control monitoring system.
2.11.2.1 The control panel of the BOPs shall provide their remote opening and closing and the shear ram-type BOP shall be capable of shearing the thickest section of the high-strength drill pipe installed in the drill string assembly. Volume of the hydropneumatic accumulator shall be sufficient to provide a double full work cycle associated with the blowout equipment opening/closing in the event of blackout.
2.11.2.2 The blowout equipment shall be equipped with the main and auxiliary control panels.
2.11.2.3 The main control panel of the blowout equipment and gate valve hydraulic drives shall be enclosed by a fire-resistant bulkhead A-60.
2.11.2.4 The auxiliary control panels shall be located in the immediate vicinity of the driller's station and in the escape routes.
This control panel is supplied throughout the entire process of drilling or repair operations in the well.
2.11.2.5 At least two remotely controlled full-bore shut-off valves in series shall be provided on the flowline and injection line of the BOP assembly. For subsea BOP unit, these valves shall be of normally closed type. The valves shall be positioned in such places as to preclude accidental damage thereof (e.g. by falling objects).
2.11.2.6 The lines and the gate valves installed shall have an internal diameter identical to that of the four-way union pipe branch.
Downstream of the gate valve assembly, their diameter may be increased by not more than 30 mm.
2.11.2.7 Control system pipelines shall be fire-resistant for a period of time required for the closing-up of the BOPs. Unless otherwise specified, this time shall be at least 3 min at a temperature of +1093 °C.
2.11.2.8 The control panel shall be provided with visual and audible alarm for low level of the transported medium.
2.11.2.9 The control system of the blowout equipment shall be provided with a device for automatic shutdown of the hydraulic drive when system pressure exceeds the allowable value.
2.11.2.10 The injection system of the hydropneumatic accumulator shall include a device for automatic shutdown of pump when the nominal working pressure is reached. Volume of the hydropneumatic accumulator shall be sufficient to provide a double full cycle of works associated with the BOP opening/closing in the event of blackout.
Control and monitoring systems of the BOP stack shall provide:

1. Opening and closing of:
 - universal BOP,
 - single-gate and double-gate ram-type BOPs,
 - gate valves of the wellhead kill and choke lines;
2. Alarm to indicate:
 - low level of working liquid in the hydraulic unit,
 - low pressure in the hydropneumatic accumulators,
 - charger malfunction,
 - blackout,
 - emergency power-up.

For supply of the control and monitoring facilities of the blowout equipment, an UPS shall be provided to ensure control in the event of blackout.

The control and monitoring facilities of the blowout equipment shall be supplied from both the main and emergency power sources throughout the drilling process or repair operations in the well. Provision shall be made for the UPS to provide control in the event of blackout. Operating time when supplied from the UPS shall correspond to that of the ESD system UPS of the automated process control system.

Hydraulically controlled subsea wellhead equipment and lower riser equipment shall be provided with additional shut-off and disconnection (mechanical or hydraulic) facilities, which operate independently of the main facilities. The control panels shall be arranged in such a way that at least one of them is accessible in emergency situation.

For the control systems of the subsea blowout equipment, provision shall be made for interlock of the riser to wellhead connection system by means of tongs.

The final BOP actuation time from signal initiation to lock-up shall not be more than 30 s for ram-type BOPs, not more than 45 s for annular BOPs. For subsea units of blowout equipment this time shall not exceed 45 s.

Diverter systems.

Design of diverter systems shall take account of possible erosion during operation. The allowable erosive wear shall be stated in the technical documentation approved by the Register.

The diverter piping shall have sufficient length to provide safe gas withdrawal from FPU/MODU/FOP and shall not impair operation of other systems during gas ingress (e.g. heating, ventilation and air conditioning systems).

The diverter system shall be connected to the control panel manually operated from a place near the driller's station. The diverter control system shall be equipped with an interlock to provide that the diverter sealing around the drilling instrument shall be closed only after the full opening of the discharge line valve.

Shut-off valves shall be operable within the whole range of working parameters and environmental conditions.

Actuation time values of the control system shall comply with the national or international standards recognized by the Register.

Capacity of the hydropneumatic accumulators shall exceed by 1,5 times the volume required for the normal system operation.

Redundancy of power sources shall be provided (individual back-up hydropneumatic accumulators, uninterruptible supply of pneumatically operated valves, etc.).

The diverter shall be controlled:
 - from the main control panel located on the derrick substructure platform;
 - from the remote control panel located in the driller's cabin.

Hydraulically driven chokes of the blowout equipment manifolds shall be controlled from the control panel located on the drilling platform.
2.11.3.10 The diverter control and monitoring system shall provide opening and closing of the following:
ball valve in the filling-up line;
diverter packer;
overshot packer;
diverter joint;
ball valves for emergency starboard and port discharge.

2.11.4 Choke and kill systems.
2.11.4.1 Length of the lines from the kill and choke units shall be stated in the technical documentation approved by the Register.
2.11.4.2 The lines and the gate valves installed shall have an internal diameter identical to that of the four-way union pipe branch.
Downstream of the gate valve assembly, their diameter may be increased by max 30 mm.
2.11.4.3 Flare discharge lines from the choke and kill units shall be securely fastened on special supports and laid aside of the production facilities and welfare spaces with a slope from the wellhead.
2.11.4.4 The high pressure manifolds of the discharge and kill lines, connections, shut-off valves, etc. shall be rated to the same working pressure as of the BOP.
2.11.4.5 It shall be possible to inject the drilling mud in the discharge and kill lines up to the working pressure of the BOP.
2.11.4.6 It shall be possible to return the drilling mud via installed knock-out drum. Provision shall be also made for emergency overboard discharge of the mud via the fixed piping.
2.11.4.7 The working pressure of these lines and associated shut-off and control valves shall not be less than the working pressure of a buffer chamber of the discharge line.
2.11.4.8 Knock-out drum shall be fitted with a pressure monitoring system and, where necessary, with a hydraulic seal of not less than 3 m in height. The gas withdrawal lines shall not be less than 200 mm in diameter. The hydraulic seal shall be connected to the discharge lines in such a way as to prevent the gas breakthrough.
2.11.4.9 The choke and kill lines shall be provided with the following:
.1 at least 3 chokes, two remotely controlled chokes and one manually controlled choke. It shall be possible to shutdown and change each choke while the system is in operation, at lower pressure, at least 2 chokes, one remotely controlled and one manually controlled;
.2 valves in each outlet and inlet lines to isolate the lines from the manifolds;
.3 at the border of high and low pressure zones, two valves of the same series shall be used.
The working pressure of the valves shall be equal to the working pressure of the choke manifold.
2.11.4.10 The drill pipe and choke line pressure shall be indicated on all control stations (remote and local). Data on the choke valve position and drilling pump capacity shall be displayed on the remote control console.
2.11.4.11 The gate valve upstream of the choke shall be provided with a plate indicating the allowable pressure for the wellhead, the weakest well section and the mud density, on which basis this pressure is determined.
2.11.4.12 The control and monitoring system of the choke system shall provide:
control of chokes, setting and automatic maintenance of the set pressure;
indication of pressures in the kill and choke lines, pressure in the drilling pump manifold;
choke position alarm.
2.11.5 Cementing system.
2.11.5.1 The equipment making part of the cementing system shall comply with the requirements of the relevant parts of the OGE Rules and normative documents listed in Appendix 3, unless otherwise specified.
2.11.5.2 The cementing system shall include:
cementing unit with cement slurry preparation system;
standby jet mixer with supercharger, settling drum and constant cement flow silo;
cement surge tank;
high pressure manifold of the cementing unit and manifolding system of the cementing system equipment;
cementing monitoring system.

2.11.5.3 The cementing system shall provide:
cement slurry preparation;
injection of cement slurry into the well;
maintenance of the cement slurry parameters;
control and monitoring of the well cementing;
monitoring of the cement slurry parameters;
pressure testing of the drill and casing strings, wellhead equipment;
maintenance of back pressure in the well.

2.11.5.4 Displacing fluid shall be supplied directly to the cementing unit via suction branch pipes of cementing pumps bypassing the open measuring tank of the cementing unit.

2.11.5.5 When the cementing system is supposed to be used for the drilling mud circulation, provision shall be made for the appropriate devices to transfer the drilling mud into the cementing system.

2.11.5.6 The cementing monitoring system shall provide indication of the following process parameters at the local control station, indication and recording of the following parameters at the foreman's office:
delivery of each cementing pump;
cumulative injected fluid volume;
cementing pump pressure;
cement slurry density.

2.11.5.7 The control system shall be integrated into the automated process control system to perform emergency shutdowns in the event of fire, gas and water ingress, extension of hazardous zones (refer to Section 2, Part IX "Special Requirements for Ensuring Explosion and Fire Safety").

2.11.6 Drilling waste water system.

2.11.6.1 The drilling waste water system shall provide:
collection of drilling waste waters of the drilling rig and their temporary storage in the drilling waste water and waste drilling mud collection tanks;
delivery of the drilling waste waters to support vessels for their transportation onshore.

2.11.6.2 All the equipment, which is a source of the drilling mud spills, and the deck areas where the drilling mud leaks are likely to occur shall be provided with coamings. Drainage from the possible spill areas shall be directed to receiving tanks of the drilling waste water collection system.

2.11.6.3 The drilling waste water collection system shall include:
drilling waste water and waste drilling mud tanks;
treated water tank;
floculent tank;
tank for additives (sodium bicarbonate);
pumps for supply of the drilling waste waters and waste drilling mud to a treating unit and delivery to a waste-removal vessel;
pumps for supply of treated water to circulation system and delivery to a waste-removal vessel.

2.11.6.4 Control and monitoring of the drilling waste water system shall provide the local start and remote shutdown of pumps from the drilling waste water delivery stations.

2.11.6.5 The main machinery control room shall provide:
.1 remote shutdown of pumps when the tanks are emptied;
.2 level indication in tanks for:
 waste drilling mud,
 drilling waste waters,
 treated water;
alarm to indicate:
pump running and overload,
high and low level in pits, waste drilling mud, drilling waste water and treated water tanks,
low temperature in treated water tank.
2.12 MARINE RISERS

2.12.1 Marine risers shall be designed to withstand the loads due to the following external factors:
waves;
current;
riser tensional loads;
FPU/MODU displacement;
drilling mud weight;
compression loads;
loads during mounting and transportation;
冰 loads.

2.12.2 Technical documentation for marine risers used on FPU/MODU/FOP, including static and
dynamic strength calculations, design of connectors, telescope and flexible joints, sections for connecting
spider shall be approved by the Register.
2.13 PIPE HANDLING EQUIPMENT AND SYSTEM

2.13.1 Pipe handling equipment and systems shall be capable of delivering pipes from racks to the drilling floor, for which purpose the equipment shall include:
 cargo winches:
 horizontal catwalk for placing pipes thereon from the racks;
 sloping platform sections used for power delivery of pipes from catwalk to the drilling floor with the use of pipe manipulators and winches.
 The sloping bridge with the equipment set may be replaced by a powered mechanism for delivery of pipes to the drilling floor.

2.13.2 Design of auxiliary winch shall provide smooth movement and reliable suspension of cargo. A clear view of the working area and pipe movement shall be provided for the operator from the control panel. Where necessary, a backup control panel shall be provided.
2.14 AUXILIARY SYSTEMS AND EQUIPMENT

2.14.1 Scope of application.
2.14.1.1 The requirements of the present Section apply to auxiliary equipment and systems forming part of the FPU/MODU/FOP drilling and process systems.

2.14.2 Low pressure compressed air system.
2.14.2.1 Low pressure compressed air system shall comply with the requirements of Sections 1, 2 and 16, Part VIII "Systems and Piping" of the Rules for the Classification and Construction of Sea-Going Ships, unless otherwise specified in the present Section.
2.14.2.2 The low pressure compressed air system shall provide storage and supply of compressed air in the required volume and at pressure to the consumers.
2.14.2.3 To supply compressed air to the consumers, FPU/MODU/FOP shall be provided with the following:
 - low pressure compressor unit;
 - air drying unit;
 - reducing valve assembly;
 - air receiver unit (air reserve shall provide failure-free shutdown of the process system equipment in the event of blackout);
 - piping with connecting, shut-off and control fittings.
2.14.2.4 The low pressure compressed air system shall supply air to the following consumers:
 - instrumentation system;
 - pneumatically controlled fittings;
 - pneumatic drive of the wellhead component control stations and other consumers.
2.14.2.5 Compressors and drying unit shall be equipped with the local monitoring and control stations providing:
 - selection of control modes: "Local/Automatic";
 - control of start and shutdown of the compressors and drying unit;
 - adjustment and automatic maintenance of the set capacity by pressure;
 - alarm, indication, protection and interlock necessary for operation of the equipment in normal and emergency situations.
2.14.2.6 The main machinery control room shall provide:
 .1 indication of the following:
 - lubricating oil pressure of compressors,
 - air humidity at the drying unit outlets,
 - control air pressure,
 - pressure in air receiver;
 .2 alarm to indicate:
 - control and operating mode of compressors and drying units,
 - increase of air temperature at the compressor outlet,
 - pressure drop of compressor lubricating oil,
 - pressure drop of control air,
 - pressure drop in air receiver,
 - failures and malfunctions of compressors and drying units.
2.14.2.7 Air supplied to the automation system shall be pre-dried to the dew point in compliance with the requirements of the equipment manufacturer.
2.14.2.8 The volume of air receiver(s) shall provide the compressed air reserve for operation of instrumentation and automation facilities during at least 1 h.
2.14.3 Inert gas (nitrogen) system.

2.14.3.1 The compressed nitrogen system shall provide storage and supply of inert gas (nitrogen) of the required pressure with maximum oxygen content of 3 % to the consumers. As a rule, FPU/MODU/FOP shall be provided with a common inert gas system for all consumers.

2.14.3.2 The compressed nitrogen system shall provide:
- purging of flare and vent headers;
- purging of gas compressor seals;
- supply of compressed air to the drilling rig equipment;
- charging of hydropneumatic accumulators of the blowout equipment control station;
- charging of hydraulic drilling pump pulsation dampeners;
- purging of the service equipment and units prior to commissioning thereof;
- purging of the service equipment and units prior to technical maintenance thereof;
- maintenance of the "nitrogen cushion" pressure in expansion tanks of closed heat supply systems;
- air change in the heat supply system, using high-temperature thermal fluid.

2.14.3.3 The compressed nitrogen equipment shall include:
- nitrogen station with gas-separating units;
- booster compressor;
- nitrogen receiver;
- cylinders;
- piping;
- instrumentation.

2.14.3.4 Nitrogen reserve in cylinders shall be provided for use in emergency situations, which shall be kept up in a stand-by mode for connection to a nitrogen distribution system.

2.14.3.5 The nitrogen unit shall be equipped with the local control and monitoring station providing operation in automatic mode, necessary alarm, indication, protection and interlock. The nitrogen station room, where nitrogen concentration in the ambient air may be changed due to the nitrogen leaks, shall be equipped with monitoring and alarm devices for the minimum and maximum oxygen content in the room (not less than 19 % and not more than 23 % by volume). Alarm shall be provided inside and outside the room as well as in the main machinery control room.

2.14.3.6 In the systems where at deviations from predetermined process conditions the ingress of fire and explosion dangerous substances in the inert media (vapour, nitrogen, etc.) supply pipeline may be possible, a non-return valve shall be installed.

2.14.3.7 The main machinery control room shall provide:
- indication of the following:
 - nitrogen pressure after nitrogen receiver and at the outlet of nitrogen booster compressor,
 - nitrogen pressure in LP and HP nitrogen receivers;
- alarm to indicate:
 - malfunctions,
 - failure and high of oxygen concentration in the nitrogen in the nitrogen unit,
 - low nitrogen pressure after nitrogen receiver and at the outlet of nitrogen booster compressor,
 - low nitrogen pressure in LP and HP nitrogen receivers,
 - charging of hydropneumatic accumulators of the blowout equipment control station,
 - charging of hydraulic drilling pump pulsation dampeners.

2.14.4 Equipment lubrication system.

2.14.4.1 Equipment lubrication system shall provide performance of the following operations:
- reception of purified oil into the oil storage tanks from a supply vessel;
- filling-in of engine crankcases with oil from barrels or oil storage tanks;
- pumping-out of waste oil from engine crankcases to the waste oil tank;
- delivery of waste oil from waste oil tank to the waste-removal vessel.
2.14.4.2 The equipment lubrication system shall comply with the requirements of Sections 1, 2 and 14, Part VIII "Systems and Piping" of the Rules for the Classification and Construction of Sea-Going Ships.

2.14.4.3 In case of the large single oil consumption from $0.5 \, \text{m}^3$ and upwards, provision shall be made of the fixed oil storage tanks with the oil being delivered from the tanks by means of portable or fixed oil transfer pumps.

2.14.4.4 In order to fill in the tanks with oil from barrels, branch pipes and portable electrically driven pumps provided with coamings shall be fitted on the exposed decks and platforms.

2.14.4.5 Oil storage and waste oil tanks shall be provided with heating arrangements.

2.14.4.6 To collect waste oil, provision shall be made for waste oil tank(s). Capacity of the waste oil tanks shall be sufficient to change oil in machinery during the period of self-contained operation. Waste oil shall be pumped out through the fuel and oil receiving stations using the waste oil electrical pump.

2.14.4.7 From the main machinery control room, control and monitoring of the following shall be performed:

1. shutdown of the waste oil transfer pump and pure oil transfer pump when tanks are emptied;
2. indication of temperature and level in the waste oil tank and oil storage tanks;
3. alarm to indicate:
 - run and overload of the oil transfer pumps,
 - low and high temperature,
 - lower and upper levels in the waste oil tank and oil storage tanks,
 - the maximum level in the waste oil tank.

2.14.4.8 Provision shall be made to stop the waste oil pump from waste oil delivery points to the waste-removal vessel.

2.14.5 Process fresh water system.

2.14.5.1 Process fresh water system shall supply fresh water required for preparation of the drilling mud and flushing of the process equipment.

2.14.5.2 The process fresh water system shall comply with the requirements of Sections 1, 2 and 15, Part VIII "Systems and Piping" of the Rules for the Classification and Construction of Sea-Going Ships.

2.14.5.3 The equipment making part of the system shall comply with the requirements of the relevant parts of the OGE Rules and normative documents listed in Appendix 3, unless otherwise specified.

2.14.5.4 The system shall contain the following equipment:

- process fresh water storage tanks;
- pneumatic tank;
- pumps to supply water for preparation of the drilling mud and cement slurry, to coagulation and flocculation units, electric dehydrator, electric pumps of screw-type centrifuge and chemical agent tank;
- pumps to supply water for flushing of the process equipment, collectors and tanks.

2.14.5.5 A local monitoring and control station shall be provided to select control mode: "Local/Remote" for the process fresh water pumps.

2.14.5.6 The main machinery control room shall provide:

1. remote control of start and shutdown of pumps;
2. indication of the following:
 - pump discharge pressure,
 - level in the process fresh water tanks;
3. alarm to indicate:
 - remote control mode,
 - pump running, overload and high discharge pressure,
 - running and malfunctions of desalinating units,
 - lower and upper levels in the process fresh water tanks.

2.14.5.7 In the absence of fresh water, in emergency cases, the system may be supplied by sea water from the sea water supply system.
2.14.6 Water cooling systems.

2.14.6.1 General requirements.

2.14.6.1.1 To cool the oil-and-gas equipment, sea or fresh water shall be used depending on the requirements of the specifications for delivery of the equipment.

2.14.6.1.2 The water cooling systems shall comply with the requirements of Sections 1, 2 and 15, Part VIII "Systems and Piping" of the Rules for the Classification and Construction of Sea-Going Ships.

2.14.6.1.3 Suction of sea water for the cooling systems shall be provided through fish protection structures (FPS). The FPS shall be designed taking into account the requirements of the national and/or international standards. The FPS throughput capacity shall provide operation of all sea water pumps with the maximum design capacity; in this case at least one stand-by FPS shall be provided. The FPS shall be located in an ice-protected area.

2.14.6.1.4 Suction lines of the sea water pumps shall be fitted with filters and sea water meters. Provision shall be made for cleaning of the filters without the pump shutdown.

2.14.6.1.5 In case the FPS installed in a water intake provide the proper sea water filtration, filters in the suction lines may be omitted.

2.14.6.1.6 The number of sea inlet and discharge openings with the fittings installed therein and located below the FPU/MODU/FOP operating waterline shall be kept to a minimum. Fittings installed in the inlet and discharge openings shall be remotely closed.

2.14.6.1.7 The number, flow and head of pumps shall be accepted subject to the requirement that the equipment is cooled under the maximum load condition. Pump redundancy shall be provided.

2.14.6.2 Fresh water cooling system of the oil-and-gas equipment machinery.

2.14.6.2.1 A selector switch of control mode: "Local/Remote" shall be provided at the local control station of the system.

2.14.6.2.2 The main machinery control room shall provide:

.1 remote control of the pump start and shutdown;
.2 indication of the following:
 water temperature and pressure at the inlet of heat exchangers,
 water temperature and pressure at the outlet of heat exchangers,
 at the inlet of pumps,
 at the inlet of cooling circuit and collector,
 water level in expansion tank;
.3 alarm to indicate:
 selected control mode,
 running, overload, high and low pressure of cooling pumps at the inlet of cooling circuit,
 low water level in expansion tank.

2.14.6.3 Sea water cooling system.

2.14.6.3.1 A selector switch of control mode: "Local/Remote" shall be provided at the local control station of the system.

2.14.6.3.2 The main machinery control room shall provide:

.1 remote control of the cooling pump start and shutdown, opening and closing of sea water inlet valves, valves for delivery of sea water to the FPS;
.2 indication of the following:
 cooling pump discharge pressure,
 pressure, flow in sea water suction line,
 flow of water discharged overboard;
.3 alarm to indicate:
 remote control mode,
 running, overload and discharge pressure drop of the pumps,
 position of sea water inlet valves and valves for delivery of sea water to the FPS,
 pressure drop in the suction line of sea water and sea water to be delivered to the FPS.
2.14.6.4 Process equipment sea water flushing system.

2.14.6.4.1 A selector switch of control mode: "Local/Remote" shall be provided at the local control station of the system.

2.14.6.4.2 The main machinery control room shall provide:

.1 indication of pressure in pneumatic tank;
.2 alarm to indicate:
 automatic control mode,
 running and overload of pumps,
 low and high pressure in pneumatic tank.

2.14.7 Chemical agent injection system.

2.14.7.1 As a rule, the following chemical agents shall be used:

agents to prevent hydrating;
agents to prevent paraphining;
agents to prevent salt deposition;
oil demulsifiers;
corrosion inhibitors;
agents to prevent foaming.

Type of chemical agents to be used is determined by the project and depends on the composition of the well fluid.

2.14.7.2 Non-return valves shall be installed in places where chemical agents are injected into the pipelines.

2.14.7.3 Substances, which are chemically incompatible, shall be stored in such a way as to preclude their interaction.

2.14.7.4 Pipelines leading from the chemical agent receiving station to storage tank shall be arranged so that they can be emptied by gravity.

2.14.7.5 Equipment for emptying of transport tanks shall be located in the area provided with a leak-tight flanged edge along its perimeter. Fixed pipelines and flexible hoses shall be protected against the possible damages, which may occur during handling operations.

2.14.7.6 The injection systems containing cryogens (e.g. liquid nitrogen) shall be located at separate areas provided with leak-tight flanged edge. Volume of the guarded space shall be sufficient to gather all possible leaks and prevent the low temperature effect on other FPU/MODU/FOP structural components.

2.14.7.7 In the area where chemical agents are handled, the protective clothing and eye wash facility shall be provided.

2.14.7.8 Volume of all storage tanks shall be sufficient to store chemical agents for the entire period of self-contained operation of FPU/MODU/FOP. The system shall have a necessary degree of redundancy.

2.14.8 Well completion and flushing system.

2.14.8.1 The well completion and flushing system shall contain:

completion pump;
well completion and flushing tank;
piping, shut-off and safety fittings;
control and monitoring facilities.

2.14.8.2 The well completion and flushing system shall provide:

fluid circulation in well with replacement of flushing fluid by water, gas or air;
gathering and direction to utilization of the well flushing products;
well flow rate measurement;
safe well shutdown in case of abnormal situation.
PART III. SYSTEMS FOR PRODUCTION, TREATMENT, GATHERING AND TRANSPORTATION OF WELL FLUIDS

1 GENERAL

1.1 APPLICATION

1.1.1 The requirements of the present Part apply to process system — process equipment (technical facilities) installed on FPU/MODU/FOP and designed for performance of operation cycle associated with production, treatment, gathering and transportation of well fluids on a sea shelf.

1.1.2 The items of the Register technical supervision, as regards the equipment for production, treatment and transportation of well fluids are given in the Nomenclature given in Section 7, Part I "General Regulations for Technical Supervision".
1.2 GENERAL REQUIREMENTS

1.2.1 General provisions relating to the procedure of technical supervision of the systems for production, treatment, gathering and transportation of well fluids of the FPU/MODU/FOP during their manufacture, mounting and operation, as well as the requirements for the amount of technical documentation submitted to the Register for approval shall comply with the requirements of Sections 3 — 10, Part I "General Regulations for Technical Supervision".

1.2.2 Components for production, gathering, treatment and transportation of well fluids: technical facilities, systems, machinery, etc. listed in the Nomenclature are subject to confirmation of compliance (certification) with the requirements of the OGE Rules with issue of the Register documents specified in 8.1.7 of Part I "General Regulations for Technical Supervision".

The systems for production, treatment and transportation of well fluids listed in the Nomenclature shall be subject to the Register technical supervision for compliance with the requirements of the OGE Rules during their mounting and tests on FPU/MODU/FOP.

1.2.3 Where the results of the technical supervision during construction of FPU/MODU/FOP show that the equipment for production, treatment, gathering and transportation of well fluids complies with the requirements of the OGE Rules, FPU/MODU/FOP shall be assigned descriptive notations added to the Register class notation in compliance with 6.3, Part I "General Regulations for Technical Supervision".

1.2.4 Equipment for production, treatment, gathering and transportation of well fluids installed on FPU/MODU/FOP under the Register technical supervision is subject to periodical surveys in service with the aim to confirm compliance with the requirements of the OGE Rules and confirm/extend the FPU/MODU/FOP class as regards the oil-and-gas equipment in compliance with Section 10, Part I "General Regulations for Technical Supervision".

1.2.5 Machinery, piping systems, cargo-handling gear, heat exchangers, pressure vessels, material and means of automation forming part of the drilling rig and process systems shall comply with the requirements of Parts IV — IX.

1.2.6 Equipment for production, treatment and transportation of the FPU/MODU/FOP well fluids shall remain operative under the conditions specified in 1.3, Part II "Drilling Rig Systems and Equipment".
1.3 REQUIREMENTS FOR ARRANGEMENT OF EQUIPMENT

1.3.1 Machinery and equipment shall be arranged in compliance with the requirements of Section 4, Part VII "Machinery Installations" of the Rules for the Classification and Construction of Sea-Going Ships, as far as they are acceptable and sufficient.

1.3.2 Working areas of the FPU/MODU/FOP process system where the well fluids are gathered, treated and transported shall be mandatorily provided with the following:
 - gas detection and alarm system;
 - fire detectors;
 - forced plenum-exhaust ventilation.

1.3.3 The systems shall contain measuring, monitoring, automation, control and interlocking devices in compliance with the project.
 Inlet and outlet pipes of process apparatus, vessels or tanks, carrying combustible gases, readily ignitable or combustible liquids, shall be fitted with shut-off fittings operated remotely and, where necessary, automatically (automatic process control system).

1.3.4 In the working areas, where equipment, tanks and pipes with readily ignitable and combustible liquids are located, discontinuous floors shall not be used.

1.3.5 Layout of equipment, tanks and pipes with readily ignitable and combustible liquids shall:
 - prevent spreading of spills beyond the working areas and exposed deck areas;
 - ensure explosion and fire safety for emergency draining of the entire contents from the production equipment, production tanks and piping to the tanks of the hazardous closed drain systems.
 To gather the leakages and spills from the production equipment and piping, the production rooms and open deck spaces shall be equipped with hazardous open drain system.

1.3.6 The maximum liquid level in the tanks shall be determined with due regard to the operating time of actuators of the overflow automatic control system, including overflow due to thermal expansion of the stored liquid.

1.3.7 Design of the equipment and tanks, when vacuum is likely to occur therein, shall provide the inert gas supply pipes to preclude formation of explosive mixtures.

1.3.8 The oil-and-gas equipment, tanks and piping, which emptying in the event of fire is impossible, shall be fitted with safety valves to provide release of the excessive pressure.

1.3.9 Heating arrangements of the equipment and tanks containing combustible gases, readily ignitable and combustible liquids shall be fitted with the following:
 - devices for temperature control;
 - automatic devices for disengaging the heating elements when the temperature limit is reached;
 - alarm for indication of fault conditions and inadmissible temperature rise.

1.3.10 On FPU/MODU/FOP, the items of group plants for gas treatment, the process in which is associated with the use of flame, shall be located as far as possible (not less than 15 m) from the apparatus containing gas, readily ignitable liquids, combustible liquids, as well as from producing wells and wells being drilled.

1.3.11 Discharges from the safety valves fitted on the process equipment, as well as from the control system pipelines shall be directed to a tank (knockout drum), while gas shall be directed to discharge or
utilization systems. The control system pipelines and wells shall be purged, discharged and pumped through the purging unit with subsequent pumping-out of liquid.

1.3.16 Piping of tanks for storage of readily ignitable liquids and combustible liquids shall provide, in the event of accident to the tank, transfer of the liquid from one tank to the other.

1.3.17 Production tanks for oily drains, chemical reagents and combustible liquids shall be fitted with overflow automatic control systems. In addition, the systems shall be equipped with remote (automatic) tank level gauging devices (without need to open hatches, union nozzles or pipe branches installed on them) and level limit alarm.

1.3.18 Tanks shall be fitted with the remote (automatic) tank level gauging devices (without opening-up of hatches, unions or pipe branches installed thereon).

1.3.19 The tanks for storing readily ignitable and combustible liquids shall be fitted with breathing, safety and shut-off fittings, sampler units and level gauges.

1.3.20 The method of arrangement of the shut-off fittings, pumping equipment, detachable joints and other sources of possible leaks of combustible substances shall provide gathering and fire-proof disposal of possible leaks (e.g. by means of the drip trays, drainage systems, etc.).

1.3.21 The equipment shall be arranged to provide the convenient and safe operation, possibility of performance of repair works and taking of the urgent measures to prevent emergency situations or confine accidents. The equipment shall be located on the exposed decks and platforms of FPU/MODU/FOP, accessible for fire extinguishing by water sprays including operations from the fire-fighting vessels.

1.3.22 To perform repair and preventive works of equipment, production tanks and piping where combustible liquids and gases may be present, provision shall be made for connection of water, steam, inert gas lines for purging (flushing) them prior to commissioning or decommissioning, as well as prior to performance of repair and scheduled maintenance of the equipment, tanks and piping where combustible liquids and gases may be present.

1.3.23 Shut-off fittings, which enable disconnection of units by a command from the ESD system (refer to Section 2, Part IX "Special Requirements for Ensuring Explosion and Fire Safety"), shall be fitted at the functional interface between the system units.

1.3.24 Auxiliary and support systems (steam generation, heat transfer fluid, cooling, drainage, etc. systems) servicing the systems containing toxic or fire explosive substances shall not come into contact with the similar systems located in safe zones.

1.3.25 Allowable service life shall be specified for the process equipment and pipeline fittings taking into account the specific service conditions. The manufacturer shall state the data on the service life in the certificates of the equipment and pipeline fittings. Design service life shall be indicated in the design documentation and the equipment certificate.

1.3.26 The necessary standby equipment shall be provided in compliance with the design approved by the Register.

1.3.27 The project shall specify the predetermined self-sufficiency period of the system operation (as a rule, not less than 15 days).

1.3.28 Provision shall be made for corrosion protection systems and corrosive wear monitoring systems. The requirements for the corrosion protection systems are established in accordance with the project depending on the service conditions.

1.3.29 Structural particulars and/or ESD systems of the process equipment shall prevent the possibility of the combustible liquid and gas emergency leaks falling on the escape routes provided for by the project within the period of time required for the people evacuation.

1.3.30 Communication of the inner space of the process apparatus, tanks and piping containing combustible gases and readily ignitable liquids with the ambient air shall be provided only via process lines and breathing arrangements fitted with flame arresters, which are intended for these purposes.

1.3.31 When it is impossible to release the combustible gases or vapours to the flare systems, they shall be discharged to the atmosphere outside the FPU/MODU/FOP spaces. Location of the combustion gas discharge or vapour release sources shall be determined by a calculation proceeding from explosion- and fire-proof conditions of their air dispersion.
1.3.32 Non-return valves shall be installed on the well flowlines upstream the inlet manifolds.

1.3.33 For process equipment in service, which is subjected to vibrations, arrangements shall be made to protect it from vibration loads.

1.3.34 Typical layout of the equipment on the FPU deck is given in Appendix 2.
2 REQUIREMENTS FOR SYSTEMS FOR PRODUCTION, TREATMENT, GATHERING AND TRANSPORTATION OF WELL FLUIDS

2.1 SYSTEM FOR GATHERING OF WELL FLUIDS

2.1.1 The system for gathering of well fluids of FPU/MODU/FOP shall be leak-tight and prevent formation of dangerous concentration of explosive and toxic substances in the environment under all operational conditions.

2.1.2 Wellheads shall be provided with the well components designed for the maximum possible pressure on the wellhead in operation. The inlet and outlet pipelines of the system for gathering of well fluids shall be provided with remote-controlled (by a command from the ESD system) shut-off fittings.

2.1.3 The well components shall comply with the requirements of standards recognized by the Register (refer to Appendix 3).

2.1.4 The well component spacing across the well pattern shall not be less than:
 - the distance between oil wellheads — 2.4 m;
 - the distance between gas and gas condensate wellheads — 3 m.
 - When the design solutions for particular distances between oil wellheads approved by Rostekhnadzor are available, the stated distances may be decreased.

2.1.5 The well components shall be protected against possible falling of cargo and tools during cargo-handling operations.
2.2 SYSTEM FOR CONTROL AND MONITORING OF PRODUCING WELL

2.2.1 Every well shall be equipped with the following:
- downhole surface-controlled subsurface safety valve (SCSSV), which provides sealing of development wells in the event of the well component failure, fire or other emergency situations;
- well components with the remote-controlled shut-off master gate valves and remote-controlled shut-off gate valves on the flowlines.

2.2.2 To control the well components use shall be made of the following:
- remote control stations of well components;
- control station of downhole SCSSV;
- remote control device of the well component gate valves.

The specified equipment shall be installed in a separate space outside an explosive zone isolated from the wellhead area (area where well components are installed) and at a distance not less than 30 m therefrom (refer also to Part IX "Special Requirements for Ensuring Explosion and Fire Safety" and Part X "Safety Assessment").

2.2.3 Serviceability of downhole SCSSV and shut-off gate valves shall be checked according to the schedule in compliance with the instructions of the manufacturer of the equipment concerned and technology regulations.

2.2.4 Wells, piping, separators, etc. shall be purged and discharged through purge recovery and discharge unit.

2.2.5 The control system of the well components and downhole SCSSV valves shall provide:
- remote control from the main machinery control room:
 - opening and closing of the well component gate valves and the valve for gas supply to the gas lift,
 - closing of SCSSV;
- automatic start and shutdown of the hydraulic stations;
- indication in the main machinery control room of the following:
 - level in the hydraulic system oil tank,
 - pressure in the high-pressure and low-pressure hydraulic collectors,
 - well pressure,
 - pressure of gas supplied to the gas lift;
- alarm in the main machinery control room to indicate:
 - open/closed position of the gate valves, SCSSV of the well components and valve for gas supply to the gas lift,
 - low level in the hydraulic system tank,
 - low pressure in the air supply main line to the control station,
 - low pressure in the high-pressure hydraulic collector,
 - low pressure in the low-pressure hydraulic collector,
 - high pressure in the well,
 - clogging of the working fluid filters of the hydraulic system.
2.3 PRODUCING RISER SYSTEM

2.3.1 The Register technical supervision of producing risers is carried out in compliance with the requirements of the standards recognized by the Register and the approved technical documentation.
2.4 SYSTEM FOR TREATMENT OF WELL FLUIDS

2.4.1 The system for well fluid treatment shall be leak-tight and prevent formation of dangerous concentration of explosive and toxic substances in the environment under all operational conditions. In justified cases, the equipment may be used, in which, according to the certificate data, regulated leaks of combustible substances may be possible (with indication of allowable values of these leaks under operational conditions). The procedure of their gathering and removal shall be stated in the design documentation.

2.4.2 Provision shall be made for alarm and shutdown systems incorporated in the automated process control system (ESD).

2.4.3 Systems and their components shall be designed for the most unfavourable combinations of pressure and temperature, as well as environmental conditions, FPU/MODU movement conditions and effects of other external factors and loads including those of short-duration.

2.4.4 During determination of loads acting on the equipment, consideration shall be generally given to the loads during:
- cold start;
- mode change;
- shutdown;
- change of operating mode;
- deadlock;
- hydraulic impacts, pressure change;
- pressure and temperature fluctuations in the system;
- pressure release and emptying;
- pressure increase;
- process cooling system failure;
- heating above the allowed temperature (e.g. in the event of fire).

2.4.5 Working pressure of the system shall be calculated proceeding from the maximum expected well pressure or a pressure reduction system fitted with a safety device, which prevents the excess of pressure downwards the choke, shall be provided.

2.4.6 Flow diagram of the system operation shall prevent the possibility of pressure increase above the allowable values in its separate components (apparatus, pipe sections) both in normal operation and in the emergency situations.

2.4.7 All vessels under excessive pressure shall be equipped with arrangements providing pressure drop when exposed to excessive heat.

2.4.8 The ESD system of the automated process control system shall provide transfer of the process equipment into a safe condition (sealing of wells, isolation of process apparatuses, release of excess pressure to discharge or utilization systems, emptying of equipment to the closed drainage system, etc.) by the algorithm specified in 2.7 and 2.8, Part IX "Special Requirements for Ensuring Explosion and Fire Safety".

2.4.9 Possibility of readily ignitable and combustible liquids penetrating to the personnel escape routes shall be excluded.

2.4.10 Operational reliability of the systems incorporated into the automated process control system (including the ESD system, overflow automatic control systems, systems of combustible gas and/or vapour detection, pressure monitoring systems, etc.) shall be provided, whenever necessary, by redundancy of the components providing functioning of the systems. Arrangement of standby control and monitoring facilities of the systems shall make it possible to control them by personnel under various accident scenarios.

2.4.11 Provision shall be made for means of automatic self-monitoring of serviceability of the said components activating alarm to notify the personnel about malfunction of the ESD system components.

2.4.12 The process systems shall be divided into segments, each segment shall be isolated from the other segments by a valve controlled by the ESD system (refer to Section 2, Part IX "Special Requirements for Ensuring Explosion and Fire Safety").
2.4.13 The following valves are used as shut-off devices of the ESD system:
 well component gate valves;
 downhole SCSSV connected to the well components;
 valve on the pipeline (riser);
 shut-off valves between the system sections with various design pressure;
 valves between various stages of process.

2.4.14 Where necessary, provision shall be made for system for reception, storage and injection of chemical agents, the specifications of which ensure the supply of chemical agents into technological process depending on specific field production project.

2.4.15 Heat exchangers with different pressure between gas and refrigerant (between cold and hot sections) shall be provided with quick-operating safety devices on the low pressure side.

2.4.16 Locations of the points of vapour flow from the glycol regeneration system shall be chosen with regard to the presence of the aromatic hydrocarbons in the vapours and their effect on the personnel and be located in a safe space.

2.4.17 Gas (vapour) discharges from the safety valves installed on the equipment with combustible gases and liquids shall be directed to discharge or utilization systems.

2.4.18 Process equipment and pipelines shall be earthed with the aim to protect them from static electricity. The earthing shall comply with the requirements of 1.2.1 and 2.2.2.6, Part X "Electrical Equipment" of the MODU/FOP Rules.

2.4.19 Thermal insulation of the process equipment shall be made of non-combustible materials. It shall comply with the requirements of 4.6, Part VII "Machinery Installations", 1.4, Part VIII "System and Piping" and 8.2, Part XII "Refrigerating Plants" of the Rules for the Classification and Construction of Sea-Going Ships.

2.4.20 Design values of wall thicknesses of the process equipment and pipelines intended for operation under effect of corrosion-aggressive agents shall be determined proceeding from the condition that the working stresses shall not exceed 0.4 yield strength normative limit having regard to a negative tolerance for manufacture.

2.4.21 Provision shall be made for a leak-tight closed drainage system for complete discharge of toxic liquids (including, where necessary, the tanks for their neutralization) and piping to supply nitrogen, steam or liquid into the equipment for displacement of toxic agent remains into the drainage or utilization system.

2.4.22 Toxic liquids shall be stored preferably in leak-tight tanks under gas-dynamic operational conditions with "nitrogen" breathing. The tanks shall be fitted with an alarm device to indicate the extreme high level, which is interlocked with the pumping equipment, and a system for emergency discharge of excess liquid into the drainage system.

2.4.23 The ESD systems for the explosive processes shall prevent formation of explosive medium in the process equipment under all possible operational conditions, and shall provide safe stoppage of production in possible emergency situations.

2.4.24 In order to prevent emergency leaks and environmental discharge of emissions, provision shall be made for the following:
 installation of guards in the areas of possible oily mixture leaks;
 installation of an open hazardous drainage system, which provides gathering of oily mixture from the areas of possible leaks into the drainage collection tank;
 installation of a system for gas withdrawal or utilization from the process equipment during its preventive maintenance and repairs, as well as in emergency situations.
2.5 FLARE SYSTEM AND GAS WITHDRAWAL SYSTEM

2.5.1 The flare system is designed for withdrawal and subsequent burning of combustible gases and vapours in the following cases:
actuation of the emergency discharge devices, safety valves, manual discharge, as well as gases and vapour withdrawal from the process units in emergency situations by means of the automated systems and remote-controlled shut-off fittings;
permanent withdrawals specified by the technical regulations;
periodical withdrawals of gases and vapours (including those during the well testing), start, adjustment and shutdown of the process equipment.

2.5.2 The flare systems incorporated into the FPU/MODU/FOP process system shall comply with the requirements of the national supervisory bodies.

2.5.3 The flare system shall be divided into high-pressure, low-pressure and sour gas flare systems (if sour gas is used in technological process). Supplies of gas (discharged products) to the flare separators shall be grouped into collectors according to the working pressure and be separate for the high-pressure, low-pressure and sour gas flare systems.

2.5.4 Flare boom shall be located on the opposite side of the accommodation block and with regard to prevailing wind direction.

2.5.5 Flare unit shall incorporate:
- flare stack;
- flare tip with gas seal;
- monitoring and automation devices;
- remote flame igniter;
- pipelines supplying gas for igniter and combustible mixture;
- pilot burners with igniters;
- sampling device.

2.5.6 The flare unit shall be provided with a device to control pressure of combustible gas supplied to the pilot burners.

2.5.7 Calculation of the flare boom height shall be made in compliance with the current standards with due regard to the allowable thermal effect on the personnel, structures and the FPU/MODU/FOP equipment.

2.5.8 Materials of the flare tip, pilot burners, manifold piping, fastening parts shall be selected with regard to their heating due to thermal radiation.

2.5.9 Manifold piping at the flare stack section shall be made of the seamless heat resistant pipes.

2.5.10 Arrangement and design of the flare unit shall prevent formation of explosive mixtures within the zone where the FPU/MODU/FOP process equipment, modules and structures are located, in the areas of potential people crowding and creation of ignition sources in case of flame blowout during emergency discharge.

2.5.11 The flare and separator units shall meet the expected operational conditions in terms of pressure and capacity in each phase of discharged fluid.

2.5.12 The piping, shut-off fittings, safety devices and other equipment of the system shall be designed with due regard to the presence of hydrates, gas and liquid mixture in the flow, temperature drop or increase under normal and emergency operational conditions.

2.5.13 The gas withdrawal pipelines shall be cut in the flare collector from above to prevent them from being filled by liquid.

2.5.14 The flare collectors and pipelines shall be of minimum length and have minimum number of bends.

2.5.15 The flare collectors and pipelines shall be self-draining. The grade towards the liquid collection device (separator) shall not be less than 0,003.

2.5.16 Gases and steams discharged to the high-pressure, low-pressure and sour gas flare systems shall not contain dropping liquid or solid particles. For this purpose, the flare systems shall be equipped with:
- high-pressure, low-pressure and sour gas flare separators;
pumps and arrangements for continuous or regular condensate draining from the flare separators.
2.5.17 The pumps used for condensate drainage from the flare system separators shall be started and shutdown both automatically and from the place of their location. Number of the pumps shall provide 100 % redundancy. The liquid phase from the flare separators shall be generally pumped to the technological process.

2.5.18 The shut-off fittings installed in combination with safety devices shall be kept permanently open and be provided with interlock in open position.

2.5.19 No stuffing box compensators shall be fitted on the flare collectors and piping.

2.5.20 In order to prevent formation of explosive mixture (due to penetration of oxygen into the system), the collectors and flare burner piping of the high-pressure, low-pressure and sour gas flare systems shall be continuously blown down with purging (fuel, natural, associated petroleum, inert) gas. The purging and discharged gases and steams shall be dried up to humidity level eliminating the steam condensation and water freezing in pipelines in winter season and shall not contain mechanical impurities. Oxygen content in the purging and discharged gases and vapours shall not exceed 50 % of the minimum hazardous oxygen content.

2.5.21 Design of the flare system shall provide protection of the process equipment from the backflow pressure during discharge.

2.5.22 The flare system shall be provided with a device for continuous monitoring of ignition process and the automatic and remote ignition system with a signal output at the control panel.

2.5.23 The flare system shall be provided with a redundant gas supply system for ignition.

2.5.24 Provision shall be made for automatic pressure control of fuel gas supplied to pilot burners and the amount of purging gas supplied to the flare collector inlet.

2.5.25 The ignition system shall be provided with 100 % redundancy, which shall ensure:
 - as a minimum, 2 attempts in each sequence;
 - parallel components to remove sources of a single failure.

2.5.26 The flare separator shall be located in the lower point of the flare system and shall be fitted with the extreme upper level sensor with a signal output in the automated process control system.

2.5.27 Where the high-pressure, low-pressure and sour gas flare separators are installed on the exposed decks, arrangements shall be taken to prevent the liquid freezing therein.

2.5.28 Flame arresters installed in the system shall comply with the requirements of the national standards on fire safety.

2.5.29 Monitoring and control of the flare system operation shall be carried out:
 - for a common flare system — from the own control room (control room, main machinery control station) or from the control room of a process unit discharging gas into the flare system;
 - for separate and special flare systems — from the control room of a process unit discharging gas.

2.5.30 The flare systems shall be provided with facilities providing continuous recording (with indication representation to the main machinery control room and the possibility of recording by the automated process control system) of the following data:
 - purging gas flow to the flare collector and gas seal;
 - liquid level in separators, condensate collectors;
 - liquid level in flare hydraulic seal;
 - quantities of discharged gases and vapours, as well as condensate returned from the hydrocarbon gas and vapour collection unit;
 - liquid temperature in flare hydraulic seal.

2.5.31 The flare systems shall be provided with alarm devices (with signal output at the main machinery control room) operating when the following parameters are reached:
 - the minimum allowable flow of the purging air to collector and gas seal;
 - the minimum allowable pressure or flow of fuel gas for the pilot burners;
 - loss of flame in the pilot burners;
 - creation of negative pressure at the base of flare stack, equal to or more than 1000 Pa;
 - the minimum and maximum allowable levels of liquid in separators, condensate collectors;
 - the minimum allowable level of liquid in flare hydraulic seals;
the maximum allowable temperature of gases supplied to the storage tanks;
the minimum allowable temperature in flare hydraulic seals;
start of condensate pumps;
start of compressors;
presence of combustible gases and vapours, which hydrocarbon concentration in the air reaches 10 %
and 20 % of lower flame limit in compressor room and hydraulic seal;
with duplication of visual and sound alarm and location of the said alarm devices above the entrance
door, as well as on the open deck installation at the areas where separators, storage tanks and pumps are
arranged.

2.5.32 For monitoring of the fuel gas and air pressure in the ignition system and in lines upstream of
the control valves, for monitoring of vapour pressure, liquid level and temperature, duplicating devices
shall be installed in the separators and condensate collectors as required.

2.5.33 Automatic control (with due regard to delayed action of the instrumentation and automatic
devices and opening time of the shut-off fittings) shall be provided in the flare systems of the following:
inert gas supply to the gas seal at a negative pressure in the flare collector equal to or exceeding 1000 Pa;
inert gas supply to the inlet of flare collector when supply of purging/fuel gas, however gas is
interrupted (continuous nitrogen supply with the mandatory justification in the design documentation may
be allowed);

drainage of condensate from separators and condensate collectors except those with continuous
drainage through the hydraulic seal when the maximum level is reached.

2.5.34 Arrangement of ladders and platforms shall comply with the requirements of 2.1.2, Part II
"Drilling Rig Systems and Equipment".

2.5.35 Thermal radiation intensity of the flare system in different operation modes shall be calculated
according to the adopted method. In cases where the thermal radiation intensity while operating the flare
system results in unacceptable heating of the FPU/MODU/FOP equipment and structures, protective
measures to prevent such heating shall be taken (installation of protective screens, water curtains,
additional thermal insulation, protective coverings and their combinations).
2.6 PRESSURE RELEASE AND GAS WITHDRAWAL SYSTEM

2.6.1 Pressure release system shall provide safety of the release and dissipation of hydrocarbons under normal and emergency operational conditions.

2.6.2 Places of pressure release by safety devices shall be located at safe distances from the FPU/MODU/FOP remaining equipment.

2.6.3 The pressure release system shall be associated with the ESD system of the automated process control system and shall be operated by its command in accordance with the operation algorithm of the automated process control system.

2.6.4 On the exposed decks and areas, the pressure release and gas withdrawal pipelines shall be thermally insulated and/or provided with heating systems to prevent condensation and crystallization of substances.

2.6.5 The requirements for flare system specified in 2.5.4, 2.5.14, 2.5.15, 2.5.18, 2.5.19, 2.5.27, 2.5.28 and 2.5.34 shall be considered during design of the pressure release system.

2.6.6 The pressure release system shall be equipped with a cold vent stack with a stack tip.

2.6.7 The stack tip shall be equipped with the cold vent stack and, as a rule, flange-mounted to the vent stack pipe.

2.6.8 The stack tip of the cold vent stack shall provide safe dissipation in the atmosphere of continuous, periodical and emergency discharges of flammable gases and vapours.

2.6.9 Design of the cold vent stack tip shall prevent formation of explosive gas concentrations in the area where the process equipment is located.

2.6.10 During calculation of the cold vent stack tip, the possible scenarios of the maximum and minimum medium discharge shall be taken into consideration.

2.6.11 Design of the cold vent stack tip shall eliminate gas dispersion below the plane of its location and precipitation therein.

2.6.12 The materials used for the manufacture of the stack tip shall prevent formation of sparks upon contact of movable parts.

2.6.13 The hydraulic tests of the cold vent stack tip shall be performed at the factory.

2.6.14 The gas withdrawal system shall provide releases of flammable gases and/or vapours to the atmosphere from all the tanks where atmospheric pressure shall be maintained. The gas withdrawal system shall provide release of flammable gases and/or vapours to the atmosphere outside the spaces and platform structures. Design of the gas withdrawal system shall prevent formation of explosive mixtures (proceeding from the explosion- and fire-proof conditions of their dissipation in the atmosphere) within the zone where the process equipment and platform structures are located, in the areas of possible people crowding and creation of ignition sources.

2.6.15 When combining gas pipelines for discharge of vapour-gas media from apparatuses with different pressure parameters, measures shall be taken to prevent the media flow from high-pressure apparatuses to low-pressure ones.

2.6.16 The end outlet section of the pipeline of the gas and/or vapour withdrawal system (upstream of gas and/or vapour) shall be equipped with the flame arresters and venting branch pipe with flame screen. A drain valve or branch pipe shall be installed in the area of possible liquid accumulation.

2.6.17 The gas withdrawal system shall be equipped with breathing (venting branch pipes with flame screen), safety and shut-off devices, as well as means of protection against flame spreading (flame arresters, liquid seals, etc.). The means of protection against flame spreading may be omitted when these lines are supplied with inert gases in quantities excluding formation of explosive mixtures therein.
2.7 SYSTEM FOR TREATMENT, GATHERING
AND UTILIZATION OF PROCESSING WASTES, INCLUDING PRODUCED WATERS

2.7.1 Drainages, which contain or may contain (in emergency situations) combustible gases, readily ignitable and combustible liquids, as well as those, which may be produced by the contaminants dangerous for the environment, are considered dangerous.

2.7.2 FPU/MODU/FOP shall be provided with the following:
- open hazardous drainage system;
- closed hazardous drainage system.

2.7.3 The closed hazardous drainage system shall be completely separated from the open hazardous drainage system.

2.7.4 Design of drainage systems shall prevent spread of combustible substances over them from one section of the platform to the other. The drainage systems shall be made of non-combustible materials.

2.7.5 To avoid gas pollution of the territory, installation and spread of flame through the drainage system during fire, hydraulic seals or scuppers with closing shall be installed thereon. The water layer forming the seal shall be at least 0,25 m high.

2.7.6 The hydraulic seals and piping of the drainage systems shall be protected against freezing.

2.7.7 Discharge of various substances, which mixture may result in reactions accompanied by heat release, formation of combustible and harmful gases, as well as solid precipitations is prohibited.

2.7.8 The closed hazardous drainage system shall provide explosion- and fire-proof discharge and removal of drainages containing combustible liquids and gases from process equipment under normal operating conditions, during routine operations and repair work, as well as in emergency situations.

2.7.9 Substances discharged to the closed hazardous drainage system shall be collected in the tanks of the closed drainage system for degassing. Gas released in the closed hazardous drainage system shall be directed to the flare system. Drainage liquid shall generally be pumped out from the closed hazardous drainage system tank to the system of well fluid treatment process.

2.7.10 Parameters of the closed hazardous drainage system (output and tank capacity) shall provide emptying of the platform process equipment with the maximum capacity.

2.7.11 Discharges from the equipment where design pressure is lower than in closed drain system shall be integrated into collectors according to the design pressure of the equipment.

2.7.12 The open hazardous drainage system shall provide explosion- and fire-proof collection and disposal of liquid wastes (drainage), from the exposed and closed platforms and zones of FPU/MODU/FOP under normal operating conditions, during routine operations and repair work, as well as in the event of accidents.

2.7.13 Hazardous drainage from the process system equipment shall flow by gravity to hazardous drainage collection tank.

2.7.14 Hazardous drainage from the drainage collection tank shall be pumped out to the process system for well fluid treatment or to a waste-removal vessel.

2.7.15 The drainage collection tank of the open hazardous drainage system, its location and also location of drainage inlets where explosive gas-vapour-air mixtures are likely to be formed, shall be provided with alarm devices to indicate explosive concentrations of combustible gases and vapours with the signal output to the main machinery control room. The hazardous drainage collection tank of the open drainage system shall be equipped with the gas withdrawal system in order to withdraw to the atmosphere.

2.7.16 Parameters of the open hazardous drainage system (output and capacity) shall provide explosion- and fire-proof discharge of readily ignitable and combustible liquids in the event of potential accidents.

2.7.17 The inlet pipelines of the drainage collection tank shall be provided with hydraulic seals to prevent escape of combustible gases and vapours from the said tank. The height of liquid column in the hydraulic seal shall not be less than 0,25 m.
2.7.18 All tanks and reservoirs of the drainage systems shall be fitted with level gauges. Alarm indicating that the maximum allowable liquid level is reached in the said tanks and reservoirs shall be actuated at the main machinery control room. Where necessary, the drainage system tanks shall be provided with heating arrangements.

2.7.19 The drainage systems shall prevent ingress of untreated drainage to the environment.

2.7.20 The monitoring and control system of the reservoir water hydrocyclone units shall provide:
- automatic control of oil show for repeated degassing, as well as treated water yield;
- alarm to be actuated at the main machinery control room to indicate high and low reservoir water pressure difference across the hydrocyclone.

2.7.21 The monitoring and control system of the degassing buffer tank shall provide:
- automatic adjustment of the following parameters in the tank: gas pressure, oil phase level, water level;
- automatic closing of valves on the following manifolds: of water intake into the tank, discharge of gas, water and oil from the tank;
- alarm in the main machinery control room to indicate: high and low oil and water level in the tank, high and low gas pressure in the tank, extreme high and low water and oil level in the tank, "open/closed" position of the valves on the well fluid inlet and outlet manifolds.

2.7.22 The monitoring and control system of the booster pumps to inject water into the filters shall provide:
 .1 emergency shutdown of the booster pumps;
 .2 automatic control of each pump supplying water to the injection pumps;
 .3 alarm actuation in the main machinery control room to indicate: high and low water flow, filter clogging.

2.7.23 The monitoring and control system of the water injection pumps shall provide:
 .1 selection of control mode for the water injection pumps:
 - at the local control station: "Local/Remote",
 - in the main machinery control room: "Remote/Automatic";
 .2 remote start and shutdown of the water injection pumps from the main machinery control room;
 .3 emergency shutdown of the water injection pumps;
 .4 automatic control for each pump supplying water to the injection well;
 .5 indication in the main machinery control room of the following:
 - water flow supplied to the injection well,
 - oil content;
 .6 alarm actuated in the main machinery control room to indicate:
 - running and malfunction of the pumps,
 - overload of the pumps,
 - selection of pump control station,
 - pump control mode,
 - high and low water flow at the pump outlet.

2.7.24 The monitoring and control system for collection of oily waters shall provide:
 .1 remote shutdown of the pump from the oily water discharge stations;
 .2 automatic emptying of drain sumps and removal of water from under the floor, shutdown of the pumps upon oily water tank filling;
 .3 indication of the oily water tank level in the main machinery control room;
 .4 alarm actuated in the main machinery control room to indicate:
 - selected mode of pump control, operation and overload,
 - position of the remote-controlled equipment,
 - the maximum allowable level in the drain sumps,
 - filling of the oily water tank, oil drainage tank, dirty oil and fuel tanks.
2.7.25 The monitoring and control system of the open hazardous drainage system shall provide:
.1 local start and shutdown of the pumps;
.2 remote control of the pump shutdown from the main machinery control room during emptying of pits and drainage collection tank;
.3 indication of the temperature and level in the drainage collection tank in the main machinery control room;
.4 alarm actuated in the main machinery control room to indicate:
running and malfunction of the pumps,
overload of the pumps,
upper and lower level in the pits and drainage collection tank,
high and low temperature in the drainage collection tank,
emergency high level in the drainage collection tank.
2.7.26 The monitoring and control system of the closed hazardous drainage system shall provide:
.1 automatic emptying of drainage tanks;
.2 selection of control mode for the pumps:
at the local control station: "Local/Remote",
in the main machinery control room: "Remote/Automatic";
.3 emergency shutdown of the pumps;
.4 indication in the main machinery control room of the following:
mode of pump control,
operation position of remote-controlled fittings;
.5 indication in the main machinery control room of the following:
running of the pumps,
eMERGENCY shutdown of the pumps,
the maximum allowable level of liquid in the system tanks,
the maximum allowable pressure in the system tanks.
2.8 SYSTEM FOR GAS DEHYDRATION

2.8.1 Plants shall be provided with automatic and manual regulation and control of the processes.
2.8.2 Each gas separator shall be fitted with at least two safety devices either of which shall provide failure-free operation of the apparatus.
2.8.3 Safety devices on the condensate collector shall be installed in the upper part of the apparatus.
2.8.4 Gas withdrawn by the safety devices shall be directed to the flare system.
2.8.5 Where the process apparatus is fitted with internal components (nozzles, partitions, knockout drums), for which the manufacturer has established an allowable pressure drop, necessary monitoring and interlocking means shall be provided.
2.8.6 A non-return valve and disconnecting device designed for the working pressure in the apparatus shall be installed on each steam line (thermal liquid supply line), absorbent (inhibitor) supply line at the apparatus inlet.
2.8.7 The automated process control system for the natural gas and gas condensate gathering and treatment shall provide:
 - corrosion inhibitor injection systems and other devices to provide taking of corrosion-preventing actions specified by the process regulations;
 - remote emergency shutdown of the installation process line from the duty operator's control panel and transfer of the process media to the flare line or emergency collecting tank;
 - remote control of the process parameter values and recording of the basic process parameters;
 - automatic control of the medium pressure in the process equipment in case of deviations of the process parameters;
 - automatic alarm actuated when the process parameters (pressure, temperature, etc.) are beyond the allowable values with the warning signals to be transmitted to the unit location and the main machinery control room;
 - gas detection and alarm at the facilities.
2.8.8 The monitoring and control system of the gas dehydration plant shall provide:
 .1 automatic control of the glycol and condensate levels;
 .2 automatic shut-off of the valve for gas outflow from absorber and gas discharge to the flare, shut-off of the valves on the gas intake line, glycol intake and discharge lines, condensate discharge line;
 .3 alarm in the main machinery control room to indicate:
 high and low glycol levels,
 high and low condensate levels,
 limiting high and low glycol levels,
 limiting high and low condensate levels,
 high temperature in the glycol heater and high gas humidity.
2.9 SYSTEM FOR GAS COMPRESSION

2.9.1 Compression units shall be fitted with shut-off and control valves, instrumentation and controls, protection and interlocking systems.

2.9.2 The compressor suction lines shall be provided with condensate collectors, the injection lines shall be provided with oil traps (where necessary) installed downstream of compressors. The condensate collectors shall be fitted with the extreme upper level sensor and a liquid removal system, visual and sound alarm, as well as with interlocking arrangement to shut down the compressor when the extreme upper level of the liquid in the separator is reached.

2.9.3 The system of fuel gas treatment for compressors shall comply with the requirements of Part IX "Machinery" of the Rules for the Classification and Construction of Sea-Going Ships.

2.9.4 The compressors and pumps, which transfer fluids via a pipeline from FPU/MODU/FOP to the reception point, shall be fitted with systems for automatic emergency shutdown of the compressor and pump, which in their turn shall be connected to the automated process control system.

2.9.5 Continuous leak-tightness monitoring of the compressor sealing system shall be provided. When unacceptable leaks or other malfunctions are detected, the compressor shall be automatically shutdown and depressurized.

2.9.6 The gas recycle line shall be laid in such a way as to provide the liquid discharge therefrom to the tie-in point upstream of the compressor separator with the recycle line shut-off valve located at the uppermost point.

2.9.7 The valves on the recycle line shall be controlled from the emergency depressurization system, via separate solenoids separate solenoids.

2.9.8 The compressor connections and their piping shall be regularly tested for leak-tightness in due dates stipulated by the manufacturer's instructions and process regulations.

2.9.9 The compressor room shall be provided with continuously operating forced plenum-exhaust ventilation.

2.9.10 Compressors transferring hydrocarbon gases shall be automatic shutdown system actuated when the hydrocarbon gas concentration in the process facility spaces reaches 20 % of LFL (also refer to 2.5 — 2.7, Part IX "Special Requirements for Ensuring Explosion and Fire Safety").

2.9.11 Gas compressor plants shall be equipped with the following (refer also to Section 2, Part IX "Special Requirements for Ensuring Explosion and Fire Safety"): instruments to monitor process parameters (pressure, flow, temperature, etc.) of the transported fluid; system of instruments to monitor condition of the compressor equipment (vibrations, bearing temperature, etc.); gas detection and alarm system in the compressor room; ventilation system, including emergency exhaust ventilation that actuates when gas contamination in air of the compressor room reaches 10 % of LFL. The capacity of the emergency ventilation system shall be taken equal to 8 air changes through the entire internal volume of the room in addition to air change generated by the main systems; alarm system to give warning of the process parameter violation; automatic shutdown and interlocking systems of the compressor when the process parameters exceed the maximum allowable values, gas concentration in air exceeds LFL, in case of malfunction of the ventilation system, actuation of the alarm system in the compressor room; control panels in the compressor room and in the main machinery control room; automatic fire detection and fire alarm systems; fire-fighting system.

2.9.12 Booster compressor stations at the natural gas production facilities shall be additionally equipped with the following:

automated control system of the equipment operation within the prescribed parameters; automated system of emergency discharge of the equipment with supply of process fluids into utilization systems.
2.9.13 The automation level of the compressor stations shall provide recording of the basic process parameters, including:
pressure, flow and temperature of the transported fluids;
indoor air condition (concentration of hazardous and toxic substances);
alarms.

2.9.14 The monitoring and control system of the inlet compressor scrubbers shall provide:
level control;
emergency condensate disposal;
alarm in the main machinery control room to indicate the upper and lower condensate levels, extremely low condensate level.

2.9.15 The monitoring and control system of compressor units shall provide:
selection of control mode for compressors at the local control station — "Local/Remote";
remote control from the main machinery control room, including start and shutdown of compressors, compressor switchover to on-load operation;
emergency shutdown of compressors;
alarm indicating that the working pressure is reached, indicating malfunction and overload of the compressor, malfunction of the lubricating oil system, overheating and high pulsations.

2.9.16 The monitoring and control system of coolers at the compressor outlet shall provide:
automatic control of gas temperature;
alarm in the main machinery control room indicating the opening of safety bursting disk.

2.9.17 The monitoring and control system of the low-pressure gas piping shall provide:
emergency shut-off of the valve to discharge gas to the high-pressure compressor line and gas discharge to flare;
automatic control of gas surging, compressor loads and capacity;
alarm in the main machinery control room indicating low and high gas temperature, low and high gas flow.
2.10 SYSTEMS FOR WATER INJECTION, GAS INJECTION AND GAS-LIFT SYSTEM

2.10.1 Capacity of the system shall be sufficient for operation in all modes.

2.10.2 A non-return valve and an automatic shut-off valve shall be fitted at the injection point to the well.

2.10.3 When operated in areas with outdoor temperature below $-5 \, ^\circ\text{C}$, the piping and wellhead manifolding of the water injection system shall be thermally insulated.

2.10.4 Places for storage of protective means and eye washing stations shall be provided in areas where biocides are used.

2.10.5 The system equipment shall, besides the requirements of this Part, comply with the requirements of Parts V "Systems and Piping", VII "Heat Exchangers and Pressure Vessels", VIII "Materials and Welding", IX "Special Requirements for Ensuring Explosion and Fire Safety".

2.10.6 The system equipment is covered by the requirements of Parts VII "Machinery Installations and Machinery", VIII "Systems and Piping", IX "Electrical Equipment" of the MODU/FOP Rules, as applicable.
2.11 SYSTEM FOR STORAGE OF WELL FLUIDS

2.11.1 The fluid storage system shall comply with the requirements of Part VIII "Systems and Piping" of the FPU Rules.
2.12 SYSTEM FOR TRANSPORTATION OF WELL FLUIDS

2.12.1 The system for transportation of well fluids shall comply with the requirements of Part VIII "Systems and Piping" of the FPU Rules.

2.12.2 The monitoring and control system of the transfer pumping unit shall provide:

.1 selection of the pump control mode:
 at the local control station — "Local/Remote",
 in the main machinery control room — "Remote/Automatic";
.2 remote control of the pump start and shutdown from the main machinery control room;
.3 automatic start and shutdown of pumps by a signal of the upper and lower level in scrubbers;
.4 emergency shutdown of pumps;
.5 alarm in the main machinery control room to indicate:
 pump running and malfunction,
 pump overload,
 pump control mode.

2.12.3 The monitoring and control system of pig launcher on the pipeline in the external transportation facility shall provide:

.1 remote control of opening and shut-off of the valves fitted on the lines for well fluid reception and discharge to the pipeline from the main machinery control room;
.2 emergency shut-off of the valves fitted on the lines for well fluid reception and discharge to the pipeline;
.3 indication in the main machinery control room of the following:
 pressure in the pig launcher/receiver,
 pressure in the bypass line;
.4 alarm in the main machinery control room to indicate the following:
 closed/open positions of the valves fitted on the lines for well fluid reception and discharge to the pipeline, pig launcher covers,
 high pressure in the pig launcher,
 high and low pressure in the bypass line,
 extremely high and low pressure in the bypass line.
2.13 SYSTEM FOR PROCESS HEATING AND COOLING

2.13.1 The heating system shall be designed for the following purposes:
heating of working spaces;
heating of process equipment;
heating/cooling of process liquids and gases.

2.13.2 The pipelines shall be thermally insulated in the following cases:
when it is necessary to reduce heat dissipation (to maintain temperature, prevent formation of condensate, ice, hydrate, etc.) as well as where applicable in accordance with 11.16, Part I "General Regulations for Technical Supervision";
when the pipe wall temperature exceeds 60 °C;
when the pipe wall temperature at working places or in corridors and spaces exceeds 45 °C.
In justified cases, the pipeline thermal insulation may be replaced by casing or guard.

2.13.3 The cooling systems shall be designed for closed-circuit cooling of the following:
gas at all compression stages;
auxiliary compressor equipment;
pumps for heat supply of the platform;
glycol regeneration plants.

2.13.4 The equipment of the heating and cooling systems are covered by the requirements of Parts VII — IX of the MODU/FOP Rules in so much as they are applicable.

2.13.5 Primary heating or cooling circuits shall be provided with sensors to detect hydrocarbon leakages.

2.13.6 Design temperature of both sections of heat exchanger shall be determined for the hottest fluid.

2.13.7 Heat exchangers shall be protected from thermal expansion when thermal liquid is circulated only from one side.
2.14 AUXILIARY SYSTEMS AND EQUIPMENT

2.14.1 The requirements for auxiliary systems and equipment are given in 2.13, Part II "Drilling Rig Systems and Equipment".
PART IV. MACHINERY INSTALLATIONS AND MACHINERY

1 GENERAL

1.1 APPLICATION

1.1.1 The requirements of the present Part apply to machinery installations and machinery providing operation of the FPU/MODU/FOP oil-and-gas equipment to perform works associated with drilling and production of well fluids on a sea shelf, treatment, gathering and transportation of well fluids.

1.2.2 The items of the Register technical supervision as regards the machinery installations, engines and machinery providing operation of the oil-and-gas equipment are given in the Nomenclature in Section 7, Part I "General Regulations for Technical Supervision".
1.2 SCOPE OF TECHNICAL SUPERVISION

1.2.1 General provision relating to the procedure for technical supervision of the machinery installations and machinery of oil-and-gas equipment of FPU/MODU/FOP during their manufacture, mounting and operation, as well as the requirements for amount of technical documentation submitted to the Register for review and approval shall comply with the requirements of Sections 3 — 10, Part I "General Regulations for Technical Supervision".
2 REQUIREMENTS FOR MACHINERY INSTALLATIONS AND MACHINERY

2.1 GENERAL REQUIREMENTS

2.1.1 Machinery installations, engines and machinery providing operation of the FPU/MODU/FOP oil-and-gas equipment shall remain operative under conditions specified in 1.3, Part II "Drilling Rig Systems and Equipment".

2.1.2 Machinery installations, engines, machinery, equipment of the drilling rig machinery spaces and systems for production, treatment and transportation of well fluids of FPU/MODU/FOP shall comply with the requirements of Part VII "Machinery Installations and Machinery" of the MODU/FOP Rules, to the extent as applicable.

2.1.3 The arrangement of machinery and equipment shall comply with the requirements of Section 11, Part I "General Regulations for Technical Supervision".
2.2 PUMPING UNITS

2.2.1 Pumps and compressors.

2.2.1.1 For all pumps transferring readily ignitable and combustible liquids, provision shall be made for remote disconnection from the main machinery control room.

2.2.1.2 Pumps used for injecting highly flammable and combustible liquids shall be fitted with alarms to give warning of deviations from operational parameters affecting the safety and of leaks. The limiting values of the safe operation shall be stipulated by the process regulations and operating manuals.

2.2.1.3 Each pumping unit shall be disconnected from collectors by means of shut-off fittings. Remote control by the automated process control system in the main machinery control room, as well as local control of the shut-off fittings shall be provided.

2.2.1.4 Shut-off, cut-off, discharge and safety devices installed on injection and suction pipelines of a pump or compressor shall be located as close as possible to the pump/compressor and be in a zone convenient and safe for maintenance.

2.2.1.5 Position indicators "Open" and "Closed" shall be provided on the shut-off fittings (gate valves, cocks). Rotation indicators "Open" and "Closed" shall be provided on the controls of all shut-off valves including those equipped with a reducer or a gate with concealed motion of a stem.

2.2.1.6 A non-return valve shall be fitted on the injection pipeline of centrifugal pumps and compressors.

2.2.1.7 For pumps (pump group) transferring combustible products, provision shall be made for remote shutdown thereof and for remote-controlled shut-off or cut-off valves to be installed on the inlet and injection lines.

2.2.1.8 Purging cock of the oil transfer pump shall be fitted with a line to discharge oil to the collection tank.

2.2.1.9 To transfer readily ignitable and harmful liquids use shall be made of pumps, which preclude the well fluid leakage.

2.2.1.10 Electric drive of the oil transfer pump shall be provided with remote switching-off and shall be of safe type.

2.2.1.11 The pumping station control panel and the main machinery control room shall be fitted with meters, which provide monitoring of pressure, flow, pumping unit bearing temperature.

2.2.2 Drilling pumps.

2.2.2.1 Each drilling pump shall be fitted with all the required instrumentation and automation means providing the pre-start preparation, fault-free operation of the drilling pumps as well as the required protection and interlocking.

2.2.2.2 Drilling pumps shall be fitted with pneumatic pressure surge chambers filled with air or inert gas. Design of the pneumatic surge chamber shall provide installation of a pressure gauge to measure pressure in gas pocket space and provide the possibility of complete depressurization (refer to 2.13.3, Part II "Drilling Rig Systems and Equipment").

2.2.2.3 Drilling pumps shall be fitted with safety devices. Design of these devices shall provide their reliable operation under specified actuation pressure regardless of the duration of their contact with drilling mud and content of abrasive solid phase therein, duration of the effect, temperature difference. When activated, the safety devices shall prevent fouling of the equipment and the pump room. Liquid drainage lines shall be self-draining.

2.2.2.4 Membranes or springs in the pump safety devices shall be opened at a pressure exceeding 10 % of the pump working pressure.

2.2.2.5 Seals in the pump hydraulic part, in the housings of the safety device and pneumatic surge chamber shall be designed for a pressure equal to 1,5 the maximum pump working pressure.
2.3 DRAWWORKS

2.3.1 Design of the drawworks drum shall provide fastening of the travelling end of the drilling line, which precludes its flattening or kinking, spontaneous slackening or detachment at its fastening point.

2.3.2 Design of the drawworks drum shall be provided with special plates with grooves for close and uniform spooling of the first layer of the drilling line. The plates shall be removable and be manufactured to match the different diameters of the drilling lines applied.

2.3.3 The braking gear of the drawworks shall be provided with at least two independent control systems, one of which (main) shall provide smooth regulation of braking torque. Drawworks, in which a controllable electric drive is the main braking system, a mechanical brake shall be provided for emergency stop and for holding the drum in a fixed position.

Design of the brake shall prevent spontaneous braking or releasing brake of the drawworks drum.

2.3.4 In the drilling units where main braking is provided by means of mechanical brake, the drawworks shall be fitted with a standby adjustable brake (electric, hydraulic or pneumatic).

2.3.5 The drawworks shall be remotely controlled from the driller's control panel. The standby brake control system:

 in case of electric brake, shall be provided with an alarm to indicate existence of exciting current and voltage in the electrical brake control system;

 in case of hydraulic brake, shall provide monitoring of liquid level in the braking system and possibility of its control.

2.3.6 Design of mechanical drive (transmissions, gear boxes, etc.) shall prevent simultaneous engagement of more than one gear, as well as spontaneous gear disengagement or shifting.

2.3.7 The drawworks control system shall provide automatic disconnection of the drive with simultaneous braking performed by a signal of the safety devices (indicator of the drawworks safe working load, limiter of the travelling block rising height).

2.3.8 Disconnection of the drive and braking of the drawworks shall be such as to prevent discharge and unspooling of the travelling part of the wireline.

2.3.9 During the drawworks operation, provision shall be made to lay the line on the drum in a proper way to prevent overlap of the wraps and their nonuniform spooling.
2.4 ROTARY TABLE

2.4.1 Design of the rotary table shall provide devices for stopping the rotary table and locking the rotary bushings. Controls of the devices shall be located in a readily accessible place.

2.4.2 Clamps of the square kelly with guide rollers or the small rotary bushings, where applicable, shall be provided with the devices to prevent their spontaneous ejection from the rotary table.

2.4.3 Bed frames, electric equipment, reduction gears, couplings, pumps included in the rotary table design shall comply with the requirements of the relevant parts of the MODU/FOP Rules and the OGE Rules.
2.5 TOP DRIVE

2.5.1 Design of the top drive shall provide the BOP equipment, actuator position sensors, wellbore part rotating speed and torque sensors.

2.5.2 The top drive shall provide:
- catching of pipe (string) for its raising;
- catching of pipe (string) for its making (breaking);
- screwing (unscrewing) of the pipe threaded joints;
- connection to the flowline (wellbore) for flushing (cleaning) of the well;
- rotation of the string;
- laying of drill pipes in a shot pit.

2.5.3 The top drive shall consist of the following:
- frames;
- control stations;
- swivel;
- reducer;
- electric motor (hydraulic drive);
- brake;
- frame;
- thread relief system;
- pipe handling mechanism;
- pipe clamp;
- swivel head;
- ball valve;
- hydraulically driven bail deflection system;
- hydraulic power plant;
- control station;
- internal BOP (dual ball valve).

2.5.4 The top drive shall be compatible with the facilities for mechanization of the round-trip operations. Actuators and drive of the power unit shall be controlled from the control panel located close to the control panels of other drilling unit equipment (drawworks, automatic tongs, etc.). The components of the top drive (guide arms, actuator module, etc.) shall not impede other process operations.

2.5.5 The blowout preventer equipment shall contain at least two built-in ball valves. One of the valves shall be remotely controlled from the driller's control panel. Working pressure of the ball valves shall not be less than the maximum allowable pressure of other components of the drilling unit injection line, and their flow section shall correspond to that of the wellbore part.

2.5.6 The control and measuring devices shall provide continuous monitoring of the following parameters:
- rotating speed of the string;
- torque value during making and drilling;
- position of the pipe handling mechanism components;
- position of the BOP system.

2.5.7 In the automatic tong control system provision shall be made for complete disconnection of the mechanisms from the hydraulics, as well as interlocking to prevent an accidental actuation.
2.6 HYDRAULIC SYSTEMS AND DRIVES

2.6.1 The hydraulic drive designed to control the devices included in the ESD system shall comprise a pneumatic hydraulic accumulator which supplies hydraulic energy to actuators in case of shutdown or failure of the pumps.

2.6.2 Pipelines, shut-off and control valves of the hydraulic systems and drives shall comply with the requirements of Section 7, Part IX "Machinery" of the Rules for the Classification and Construction of Sea-Going Ships, where applicable.

2.6.3 The actuation pressure of safety valves shall exceed the operating pressure by maximum 10%. The working liquid from safety valves shall be discharged to the hydraulic system tank.

2.6.4 The hydraulic system design shall provide:
 replacement of hydraulic drive components, pipelines and filters without need to drain liquid from the hydraulic system tank;
 continuous filtration of the working liquid;
 visual monitoring of the working liquid level in the hydraulic system tank.

2.6.5 While repairing the hydraulic drive system, provision shall be made to totally remove the working liquid, pump the pipelines with the working liquid for cleaning the internal surface of pipelines from contaminants.
PART V. SYSTEMS AND PIPING

1 GENERAL

1.1 APPLICATION

1.1.1 The requirements of the present Part apply to features of the following piping systems of the FPU/MODU/FOP oil-and-gas equipment.

1.1.1.1 Drilling support systems:
- well cementing system;
- free-flowing material systems;
- choke and kill systems;
- drilling riser system;
- base fluid;
- salt brine.

1.1.1.2 Drilling mud systems:
- storage system;
- gathering, cleaning and degassing system;
- high-pressure system;
- low-pressure system;
- seawater system.

1.1.1.3 Oil treating systems:
- oil gathering and separation systems;
- stabilization, desalting and dehydration systems;
- associated petroleum gas gathering, treatment and utilization system.

1.1.1.4 Gas treating systems:
- gas separation and dehydration systems;
- gas condensate gathering and treatment systems;
- absorbent regeneration system;
- gas compression system;
- gas-lift system.

1.1.1.5 Chemical agent reception, storage and delivery systems.

1.1.1.6 Flare systems.

1.1.1.7 Process heating/cooling systems.

1.1.1.8 Compressed-air systems:
- instrumentation systems;
- free-flowing component transportation systems.

1.1.1.9 Systems of water treatment and injection into the bed:
- water treatment system;
- water distribution system;
- water injection system.

1.1.1.10 Hazardous drainage systems:
- open systems;
- closed systems.

1.1.1.11 Well fluid oil and gas offloading systems:
- measuring system;
- transportation system.
1.1.1.12 Pressure release and gas withdrawal systems.
1.1.1.13 Well completion and flushing systems.
1.1.1.14 Oily water gathering and treatment systems.
1.1.1.15 System of sludge injection into the bed:
 slurry preparation;
 injection system.
1.2 SCOPE OF TECHNICAL SUPERVISION

1.2.1 General provisions relating to the procedure of technical supervision of the systems for production, gathering, treatment and transportation of well fluids of FPU/MODU/FOP during their manufacture, mounting and operation, as well as the requirements for the amount of technical documentation submitted to the Register for review and approval shall comply with the requirements of Sections 3 — 10, Part I "General Regulations for Technical Supervision".
1.3 PROTECTION AND INSULATION OF PIPING

1.3.1 Pipes for seawater used for the process purposes shall be protected against corrosion and insulated with due regard to the requirements of 1.4, Part VIII "Systems and Piping" of the Rules for the Classification and Construction of Sea-Going Ships.

1.3.2 Depending on the corrosion rates of steel used for manufacture of the oil-and-gas equipment pipes the media are subdivided into the following groups:

- non-corrosive and low corrosive — with corrosion rate up to 0,1 mm/year;
- moderate corrosive — with corrosion rate from 0,1 to 0,5 mm/year;
- high corrosive — with corrosion rate more than 0,5 mm/year.

1.3.3 Parameters of the process pipes exposed to the effect of hydrogen sulphide (as a rule, where the hydrogen sulphide content of the well fluids exceeds 6 % by volume), shall be selected with regard to the process parameters and characteristics of the corrosive medium. To protect such pipes against corrosion, use shall be made of corrosion inhibitors, special coatings and procedures to reduce corrosiveness of the well fluids.

1.3.4 Pipes resistant to sulphide-corrosion cracking shall be used in the following cases.

1.3.4.1 For multiphase "oil-gas-water" fluid with gas factor less than 890 nm³/m³:
 .1 with absolute pressure of hydrogen sulphide below 1,83 MPa:
 with volume concentration of hydrogen sulphide above 15 %,
 with partial pressure of hydrogen sulphide above 73 kPa and volume concentration of hydrogen sulphide below 15 %;
 .2 with absolute pressure of hydrogen sulphide above 1,83 MPa:
 with volume concentration of hydrogen sulphide above 0,02 %,
 with partial pressure of hydrogen sulphide above 345 kPa and volume concentration of hydrogen sulphide below 0,02 %.

1.3.4.2 For multiphase "oil-gas-water" fluid with gas factor more than 890 nm³/m³:
 .1 with absolute pressure of hydrogen sulphide less than 450 kPa:
 with volume concentration of hydrogen sulphide above 10 %;
 .2 with absolute pressure of hydrogen sulphide more than 450 kPa:
 with partial pressure of hydrogen sulphide above 345 kPa and volume concentration of hydrogen sulphide below 0,075 %.

1.3.5 Process equipment and piping designed for operation in contact with corrosive substances shall be fitted with instruments and devices to monitor corrosion and corrosion cracking. Where appropriate, the device for monitoring corrosion and corrosion cracking may be omitted.

1.3.6 The piping laid in spaces and boxes shall be thermally insulated when the substances conveyed have a temperature equal to or lower than the dew point for design conditions.

1.3.7 When it is necessary to apply outer thermal insulation on the process apparatus and piping, measures shall be taken to avoid contact thereof with combustible fluids. Temperature of outer surfaces of the equipment and/or sheathing of the thermal insulating coatings shall not exceed 80 % of the self-ignition temperature of the most fire explosive fluid. In places accessible for the maintenance personnel the temperature shall not be higher than 45 °C indoors and 60 °C outdoors. Thermal insulation shall be made of non-combustible materials.
2 GENERAL REQUIREMENTS FOR SYSTEMS AND PIPING

2.1 REQUIREMENTS FOR DESIGN OF PIPING SYSTEMS

2.1.1 During determination of design flow of the piping systems with two-phase transported medium it is necessary to increase the flow value with regard to the pulsation factor accounting for unsteady fluid flow regime. The pulsation factors are determined by hydrodynamic calculations of the piping system or may be taken from Table 2.1.1.

Table 2.1.1

<table>
<thead>
<tr>
<th>Purpose of piping</th>
<th>Pulsation factor, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping installed on the same platform with producing wells</td>
<td>20</td>
</tr>
<tr>
<td>Primary treatment plant is located at a distance up to 45 m from the wells (across water surface)</td>
<td>30</td>
</tr>
<tr>
<td>Primary treatment plant is located at a distance of more than 45 m from the wells (across water surface)</td>
<td>40</td>
</tr>
<tr>
<td>Piping installed on the same platform with producing wells when the gas lift is used</td>
<td>50</td>
</tr>
<tr>
<td>Plant receiving well fluids from another platform or remote well when gas lift is used</td>
<td>60</td>
</tr>
</tbody>
</table>

2.1.2 Sizes of piping for single-phase liquid shall be generally determined according to the flow rate. For the piping conveying single-phase liquids from one tank to another with a pressure difference, the recommended flow rate shall not exceed 3 m/s at the maximum liquid flow.

2.1.3 When selecting pipe materials the following shall be considered:
- purpose of piping;
- compatibility with other materials;
- mechanical strength, plasticity, elasticity and impact toughness;
- need for special welding procedures and other types of joints;
- need for special types of inspection, testing and quality control;
- possibility of incorrect application in service;
- corrosion and erosion caused by the transported fluids and/or marine environment;
- need for retention of operational characteristics in the event of fire.

2.1.4 When determining pressure losses, hydraulic resistance of the installed shut-off and control valves and fittings shall be taken into account.

2.1.5 Laying of piping shall provide (refer also to 2.5):
- possibility of using hoisting and transportation facilities and fire extinguishing equipment contemplated by design;
- division into process assemblies and units;
- possibility of performing all kinds of works associated with inspection, heat treatment of welds and testing;
- insulation and protection of piping against corrosion, atmospheric and static electricity;
- prevention of formation of ice and other plugs in piping;
- the minimum extension of piping;
- exclusion of sagging and formation of stagnant pockets;
- possibility of self-compensation for temperature strains of piping.
2.2 METAL PIPING

2.2.1 General requirements.

2.2.1.1 Requirements for the materials used during manufacture of piping and fittings, allowable radii of pipe bends and their heat treatment after bending, allowable pipe wall thicknesses and types of pipe joints shall comply with Section 2, Part VIII "Systems and Piping" of the Rules for the Classification and Construction of Sea-Going Ships, unless otherwise specified in the present Section.

2.2.1.2 Materials intended for manufacture of steel pipes and their parts shall comply with the requirements of standards agreed with the Register and technical documentation approved by the Register.

2.2.1.3 Chemical composition of steel is specified in compliance with standards/specifications agreed with the Register proceeding from the required mechanical properties, at the design elevated temperature inclusive. Along with that, the content of base elements shall not exceed the values stated in 3.4, Part XIII "Materials" of the Rules for the Classification and Construction of Sea-Going Ships.

2.2.1.4 When calculating the piping wall thicknesses, corrosion allowance for the design wall thickness shall be selected in such a way that the required design service life and corrosion rate specified in 1.3.2 are provided.

2.2.1.5 Use of rimming steel for manufacture of pipes is not permitted, in technically justified cases semi-killed steel may be used.

2.2.1.6 Pipes shall be tested by the manufacturer by a test hydraulic pressure specified in the normative and technical documentation for the pipes or the guaranteed value of test pressure shall be stated in the certificate.

The hydraulic tests of seamless pipes may be omitted if the pipes have been subjected to non-destructive testing over the entire surface.

2.2.1.7 Mechanical and process properties of steel pipes shall comply with the recognized standards/specifications. Unless otherwise specified, the composition of pipe tests, sampling and scope of testing shall comply with the requirements of 3.4, Part XIII "Materials" of the Rules for the Classification and Construction of Sea-Going Ships.

2.2.2 Pipelines with nominal pressure up to 10.0 MPa.

2.2.2.1 Pipes and formed components of piping shall be manufactured of steel possessing process weldability, yield ratio not more than 0.75, breaking elongation of the metal on five-fold specimens not less than 16 % and impact toughness KCU not less than 30 J/cm2 at the minimum design temperature of the pipe component wall.

2.2.2.2 For the pipelines conveying liquefied hydrocarbon gases with a diameter more than 400 mm, use of electric-welded pipes at corrosion rate up to 0.1 mm/year, with working pressure up to 2.5 MPa, which have been subjected to heat treatment, 100 % non-destructive testing, with satisfactory results of mechanical tests of welded joint specimen, including impact toughness test (KCU), may be allowed.

2.2.2.3 The electric-welded pipes used for other process piping of the oil-and-gas equipment, except for the piping used for liquefied gases at a pressure more than 1.6 MPa, combustible and hardly ignitable liquids at a pressure more than 2.5 MPa and with a working temperature above 300 °C, shall be in heat-treated condition and their welds shall be subjected to 100 % non-destructive testing and bending or impact toughness test.

2.2.2.4 The electric-welded pipes, which are in contact with the medium producing corrosion cracking of the metal, regardless of the pressure and wall thickness, shall be in heat-treated condition, and their welds shall be as strong as the base metal and subjected to 100 % non-destructive testing.

2.2.2.5 Flat welded flanges are used for the piping operating under a nominal pressure not more than 2.5 MPa and at a temperature of medium not higher than 300 °C. For the piping operating under a nominal pressure above 2.5 MPa, regardless of the temperature, as well as for the piping with a working temperature above 300 °C, regardless of the pressure, butt-welded flanges shall be used.
2.2.2.6 Welded branch pipes shall be used for the process piping:
with inside nominal diameter D_N of 50 — 400 at a nominal pressure P_N not more than 6,3 MPa;
with inside nominal diameter D_N of 500 — 1400 at a nominal pressure P_N not more than 2,5 MPa.

2.2.2.7 Steel concentric and eccentric reducers with inside nominal diameter D_N of 250 — 400 may be used for the process piping at a nominal pressure P_N up to 4 MPa, and with D_N of 500 — 1400 at P_N up to 2,5 MPa. Reducer welds shall be subjected to 100 % non-destructive testing.

2.2.2.8 Welded four-way pipe unions may be used on the piping made of carbon steel at a working temperature not higher than 250 °C. Four-way pipe unions made of electric-welded pipes may be used at a nominal pressure P_N not more than 1,6 MPa; along with that, they shall be made of the pipes recommended for use at a nominal pressure P_N not less than 2,5 MPa. Four-way pipe unions made of seamless pipes may be used at a nominal pressure P_N not more than 2,5 MPa, provided they are made of the pipes recommended for use at a pressure P_N not less than 4 MPa.

2.2.2.9 For the process piping use shall be generally made of knuckle bends made of seamless and welded straight seamed pipes by hot stamping or drawing method, bent and built-up steel branches.

2.2.3 Pipelines with nominal pressure above 10,0 MPa.

2.2.3.1 For manufacture, mounting and repair of pipelines to be used at a pressure above 10,0 MPa and up to 320,0 MPa and at a temperature from —50 up to 540 °C, use shall be made of steel pipes in compliance with the standards agreed with the Register. Conditions of using materials for corrosive media containing hydrogen, ammonia, carbon monoxide are determined in compliance with the technical documentation reviewed and approved by the Register.

2.2.3.2 Semi-finished products of steel pipes shall be subjected to impact test to be carried out on the specimens with notch of K_CU type and $K.CV$ type at a temperature of 20 °C, as well as at sub-zero temperatures in case where pipes are operated under such conditions. The values of impact toughness for steel semi-finished products and pipes at all test temperatures for K_CU shall not be less than 30 J/cm2 and for $K.CV$ — not less than 25 J/cm2.

2.2.3.3 Each pipe shall be subjected to hydraulic tests. The value of test pressure is specified in the normative and technical documentation for pipes. The pipes shall be delivered in heat-treated condition.

2.2.3.4 The pipes with inside diameter of 14 mm and more shall be subjected to non-destructive testing. The pipes with inside diameter less that 14 mm shall be subjected to magnetic particle or dye-penetrant testing.

2.2.3.5 The pipes made of corrosion-resistant steels shall be subjected to intergranular corrosion tests, when those steels are liable to intercrystalline corrosion.

2.2.3.6 During manufacture, mounting and repair it is necessary to perform incoming inspection of pipes, forgings, welded joint components and welding materials for the oil-and-gas equipment pipelines for compliance with the requirements of the OGE Rules, standards, specifications and technical documentation. The extent and methods of inspection shall be agreed with the Register and the tests shall include:
- tensile test at 20 °C and working temperature;
- impact test at 20 °C and sub-zero temperature;
- micro structural analysis;
- flattening test;
- static bend test.
2.3 MECHANICAL AND FLEXIBLE, EXPANSION JOINTS AND HOSES

2.3.1 Mechanical, flexible and expansion joints.
2.3.1.1 Type and design of the mechanical, flexible and expansion joints, which are used in the oil-and-gas equipment systems described in 1.1.1, shall be approved by the Register.
2.3.1.2 The requirements for the mechanical, flexible and expansion joints shall comply with 2.4.5, 2.5, Part VIII "Systems and Piping" of the Rules for the Classification and Construction of Sea-Going Ships and 8.5, Part IV "Technical Supervision during Manufacture of Products" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.
2.3.1.3 During mounting of the oil-and-gas equipment flexible joints, instructions of Appendix to Section 8, Part V "Technical Supervision during Construction of Ships" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships (Instructions on the Installation of Flexible Joints) shall be carried out.

2.3.2 Hoses.
2.3.2.1 The hoses used for loading/offloading of well fluids shall comply with the requirements of Section 6, Part VIII "Systems and Piping" of the Rules for the Classification and Construction of Sea-Going Ships and 8.8, Part IV "Technical Supervision during Manufacture of Products" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.
2.3.2.2 High pressure drilling hoses shall comply with the requirements of the standards recognized by the Register and the technical documentation approved by the Register.
2.4 FITTINGS

2.4.1 Design of the fittings with manual and remote control, their marking and arrangement shall comply with the requirements of Section 4, Part VIII "Systems and Piping" of the Rules for the Classification and Construction of Sea-Going Ships, unless otherwise specified in the present Section.

2.4.2 When the system is fitted with remote-controlled power driven valves, also arrangements for their manual control shall be provided.

2.4.3 The shut-off pipe fittings providing leak-tightness shall be selected according to the current standards and classes in compliance with GOST 9544-2015.

2.4.4 Fittings made of carbon and alloyed steels may be used for media with corrosion rate not more than 0,5 mm/year.

2.4.5 The fittings made of grey cast iron are not allowed for use on the pipelines conveying toxic substances and fire and explosion dangerous substances. The fittings made of grey cast iron may be used on other pipelines at a design pressure not more than 1,0 MPa (for steam, not more than 0,3 MPa) operated at an environment temperature not lower than −15 °C. In this case, the ultimate strength of grey cast iron shall not be less than 300 MPa.

2.4.6 The fittings made of cast iron are not allowed for use on the pipelines conveying liquefied hydrocarbon gases and readily ignitable liquids with boiling point below 45 °C.

For moderately hazardous toxic substances, readily ignitable liquids (except those with boiling point below 45 °C) and combustible liquids, the fittings made of ferritic ductile cast iron may be used if the working temperature limits are not lower than −15 °C and not higher than 150 °C at a working pressure up to 1,6 MPa. In this case, the malleable cast iron shall have elongation more than 12 % and for medium working pressures up to 1,0 MPa use shall be made of the fittings designed for pressure P_n not less than 1,6 MPa, and for working pressures above 1,0 MPa use shall be made of the fittings designed for a pressure not less than 2,5 MPa.

2.4.7 Scope of application of the fittings made of ferritic ductile cast iron with elongation less than 12 % shall comply with 2.4.5.

2.4.8 The fittings made of spheroidal or nodular graphite cast iron may be used for the pipelines conveying readily ignitable liquids when the elongation of that cast iron is not less than 12 % and the working temperature shall not exceed 300 °C. The impact toughness of the spheroidal or nodular graphite cast iron for the fittings used at a temperature lower than −15 °C shall not be less than 20 J/cm2.

2.4.9 At elongation less than 12 %, scope of application of the spheroidal or nodular graphite cast iron shall comply with 2.4.5.

2.4.10 Regardless of the medium, working pressure and temperature, the fittings made of grey and malleable cast iron shall not be used in the following cases:
- on the pipelines exposed to vibrations and hydraulic impacts;
- on the pipelines with medium temperatures above 220 °C;
- on the pipelines operating under extreme alternating temperature conditions;
where a substantial cooling of the fittings due to Joule-Thomson effect is possible;
- on the pipelines conveying fire and explosion dangerous substances containing water or other freezing liquids at the pipe wall temperature below 0 °C, regardless of pressure;
- in pump unit manifolding system on open areas;
- on piping of tanks and vessels for storing fire and explosion dangerous and toxic substances.

2.4.11 On the pipelines operating at an environment temperature lower than −40 °C use shall be made of fittings made of the appropriate alloyed steels, special alloys or non-ferrous metals, with an impact toughness of the metal (KCV) not less than 20 J/cm2 at the minimum possible casing temperature.

2.4.12 For the pipelines with working pressure above 35,0 MPa cast fittings shall not be used.

2.4.13 The fittings with flat face flanges shall not be used in the pipelines with a working pressure above 10,0 MPa.
2.4.14 The piping and valves used at a working temperature from 0 to \(-165 ^\circ\text{C}\) shall meet the requirements in Part VI "Systems and Piping" of the Rules for the Classification and Construction of Ships Carrying Liquefied Gases in Bulk.
2.5 PIPING LAYING

2.5.1 Piping shall be laid in compliance with Section 5, Part VIII "Systems and Piping" of the Rules for the Classification and Construction of Sea-Going Ships.

2.5.2 Systems and piping conveying safe media shall be separated from the piping, which may contain explosive and inflammable media.

Cross-connection may be allowed by the Register in case when measures are taken to preclude potential contamination of the piping containing safe medium.

2.5.3 Where the pipelines pass through watertight bulkheads, decks and other watertight structures, there shall be used appropriate bulkhead sockets, welded pads and other details to ensure the integrity of the structure concerned.

Sockets attached by welding to watertight decks and bulkheads shall have the wall thickness, as a minimum, 1.5 mm greater than that of pipes connected to the sockets.

2.5.4 If the FPU/MODU/FOP pipelines serve more than one compartment or they are located in the area of possible flooding (refer to 3.4, Part V "Subdivision" of the MODU/FOP Rules), design provisions shall be made to prevent flooding of other compartments via these systems in case of failure.

For this purpose, the pipelines shall be fitted with watertight shut-off arrangements installed on watertight bulkheads and decks remotely controlled from the upper deck.

2.5.5 Where the pipelines pass through fire-resisting bulkheads, the requirements of 2.1.3, Part VI "Fire Protection" of the Rules for the Classification and Construction of Sea-Going Ships shall be met.
2.6 SURVEYS OF PIPING SYSTEMS DURING CONSTRUCTION OF FPU/MODU/FOP

2.6.1 Surveys of the piping systems during construction of FPU/MODU/FOP shall be carried out in compliance with Section 9, Part I "General Regulations for Technical Supervision".

2.6.2 Mounting of the piping systems shall be performed in compliance with the technical documentation approved by the Register.
2.7 SURVEYS OF PIPING SYSTEMS OF FPU/MODU/FOP IN SERVICE

2.7.1 Initial surveys.
2.7.1.1 The piping systems of oil-and-gas equipment of FPU/MODU/FOP manufactured without the Register technical supervision, as well as in cases mentioned in 10.2.2, Part I "General Regulations for Technical Supervision" shall be submitted to the initial survey.
2.7.1.2 During initial survey the construction, arrangement and installation of the piping systems of the FPU/MODU/FOP oil-and-gas equipment shall be checked for compliance with the requirements of the OGE Rules. Extent of examinations, tests, measurements and operational testing is specified by the Register with due regard to the technical condition of the piping systems and availability of certificates or permissions issued by other classification or supervisory body. The dates of the subsequent surveys are counted from the dates stated in the certificate with regard to subsequent concurrency with periodical surveys.

2.7.2 Periodical surveys.
2.7.2.1 Survey of the pipelines with nominal pressure up to 10,0 MPa.
2.7.2.1.1 Survey of pipelines of the FPU/MODU/FOP oil-and-gas equipment with nominal pressure up to 10,0 MPa shall be carried out in compliance with the requirements of Section 10 and Table 10.2.7, Part I "General Regulations for Technical Supervision".
2.7.2.1.2 Dates of surveys (examinations with access, opening-up or dismantling and thickness measurements being provided, where necessary) shall comply with Table 10.2.7, Part I "General Regulations for Technical Supervision". When setting dates, it is necessary to take into consideration the rate of corrosive-erosive wear, operational conditions and results of the preceding surveys of the pipelines.
2.7.2.1.3 During surveys of the piping systems it is necessary:
 - to carry out external examination of the pipeline;
 - to measure thickness of the pipeline wall and welded flange connection using non-destructive testing equipment;
 - to carry out internal survey of the pipeline after dismantling (disassembly) of the section operating under the most complicated conditions (bends, T-joints, incuts, places of pipe contraction, upstream and downstream of fittings, places of accumulation of moisture and fluids causing corrosion, in stagnant pockets, drainages), as well as on straight piping sections in technically justified cases.
 - Along with that, the straight sections of interblock pipelines shall be subjected to wall thickness measurement in at least three places. In all cases, wall thickness shall be checked in 3 — 4 diameter points and on the branch pipes — in at least 4 — 6 points on the convex and concave parts.
2.7.2.1.4 The wall thickness shall be measured on sections operating under the most complicated conditions (bends, T-joints, incuts, places of pipe contraction, upstream and downstream of fittings, places of accumulation of moisture and fluids causing corrosion, in stagnant pockets, drainages), as well as on straight piping sections in technically justified cases.
2.7.2.1.5 Survey of the welded flange connection shall be carried out by means of internal survey (with the pipeline being disassembled) or thickness measurements by non-destructive testing in at least 3 points around the circumference of the flange collar.
2.7.2.1.6 The pipeline sections, which were subjected to disassembly, cutting and welding in the process of survey, after assembly shall be tested for strength and tightness. In justified cases, during disassembly of the flanged connections associated with replacement of gaskets, fittings or individual components, only tightness tests may be permitted. In this case, the newly installed fittings or pipeline components shall be previously tested for strength by a test pressure in accordance with 2.7.4 and 2.7.5.
2.7.2.1.7 Upon expiry of the designed service life, the pipeline, regardless of its technical condition, shall be subjected to an overall inspection in order to determine possibility and time period of further operation.
2.7.2.2 Survey of the pipelines with nominal pressure above 10,0 MPa.
2.7.2.2.1 Survey of pipelines of the FPU/MODU/FOP oil-and-gas equipment with a nominal pressure above 10,0 MPa shall be carried out in compliance with the requirements of Section 10 and Table 10.2.7, Part I "General Regulations for Technical Supervision".
2.7.2.2 Dates of surveys (examinations with access, opening-up or dismantling and thickness measurements being provided, where necessary) shall comply with Table 10.2.7, Part I "General Regulations for Technical Supervision".

2.7.2.3 Dates of surveys of the pipelines with a pressure above 10.0 MPa shall be set proceeding from the operational conditions but not less than once in 4 years. The first survey shall be carried out not later than in 2 years after the pipeline was commissioned.

2.7.2.4 Scope of control survey of the pipelines with a pressure above 10.0 MPa shall cover:
- at least two sections of the pipelines of each process block, regardless of the medium temperature;
- at least one section of each collector or interblock pipelines, regardless of the medium temperature.
Selection of the test sections shall be agreed with the Register.

2.7.2.5 During survey of the test section of the pipeline with a pressure above 10.0 MPa it is necessary:
- to carry out external examination;
- when union or flange joints are used, to disassemble them and thereafter to carry out internal survey;
- to measure thicknesses of the pipe walls and other components of the test section;
- when during examination defects are detected in welds (in the near weld zone) or their quality is doubtful, to carry out non-destructive testing;
- when the metal quality is doubtful, to check its mechanical properties and chemical composition;
- to check condition of couplings, flanges, gaskets, fastenings, as well as the pipe formed components and fittings, where provided on the test section.

2.7.2.6 Upon unsatisfactory survey results of the test sections of the pipeline with a pressure above 10.0 MPa, an overall survey shall be carried out with complete dismantling of the pipeline and check of the condition of pipe assemblies and components, as well as fittings installed on the pipeline.

2.7.2.7 All pipelines and/or their sections, which during survey were subjected to disassembly, cutting and welding, after assembly shall be tested for strength and tightness.

2.7.2.8 Upon expiry of the designed service life, the pipeline, regardless of its technical condition, shall be subjected to an overall inspection in order to determine possibility and time period of further operation.

2.7.3 Survey of the piping fittings.

2.7.3.1 Examination and repair of the piping fittings, including non-return valves, as well as the driving gear (electric, pneumatic, hydraulic, mechanical drive), as a rule, shall be carried out during survey of the pipeline.

2.7.3.2 During survey of the fittings, including non-return valves, the following operations shall be performed:
- external examination;
- disassembly and examination of condition of individual parts;
- examination of inner surface and, where necessary, non-destructive testing;
- lapping-in of sealing surfaces (where necessary);
- assembly, operational testing and strength and tightness tests.

2.7.4 Testing of piping.

2.7.4.1 The piping shall be hydraulically tested for strength and tightness:
- after completion of mounting of the oil-and-gas equipment or on the Register demand during the initial surveys;
- in service, in due dates set by the OGE Rules (refer to Section 10 and Table 10.2.7, Part I "General Regulations for Technical Supervision").

2.7.4.2 Value of the test pressure p_t, in MPa, for the cases mentioned in 2.7.4.1 during strength tests (except the injection pipelines and their fittings, refer to 2.8.2.8, Part II "Drilling Rig Systems and Equipment") shall not be less than:

\[p_t = 1.25p \frac{\sigma_{20}}{\sigma_t} \] \hspace{1cm} (2.7.4.2)

where p = the design pressure of the pipeline, in MPa;
σ_{20} = the allowable stress for the pipeline material at 20 °C, in MPa;
σ_t = the allowable stress for the pipeline material at the maximum above-zero design temperature, in MPa.
In all cases, the value of the test pressure shall be such that the equivalent stress in the pipeline wall does not exceed 90% of the yield strength at the test temperature.

2.7.4.3 The test pressure in the pipeline specified in 2.7.4.2 shall be maintained for not less than 10 min (strength test) and then it shall be reduced down to the working pressure, at which a thorough examination of welds shall be carried out (tightness test).

After completion of examination, the pressure shall be increased up to the test pressure and maintained for 5 min more, after that the pressure shall be again reduced down to the working pressure and the pipeline shall be subjected to a thorough examination for the second time.

Duration of the tightness test depends on duration of the pipeline examination and leakage test of the detachable joints.

2.7.4.4 The test of the pipelines with a nominal pressure up to 10,0 MPa for strength and tightness may be hydraulic or air test. Generally, hydraulic test shall be conducted. In justified cases, hydraulic test may be replaced by air test.

2.7.4.5 The pipelines designed for a nominal pressure above 10,0 MPa shall be hydraulically tested. In technically justified cases, hydraulic test of these pipelines may be replaced by air test, provided that this test is monitored by an acoustic emission method (only if the ambient air temperature is above zero).

2.7.4.6 Results of the hydraulic test for strength and tightness are considered satisfactory if during the test no breaking, visible deformations, pressure drops according to pressure gauge occurred and no leakage and sweating were detected in the base metal, welds, fitting bodies, detachable joints and in all incuts.

2.7.4.7 All pipelines for toxic substances, combustible gases and readily ignitable liquids, besides routine tests for strength and tightness shall be subjected to additional leakage test with determination of pressure drop during the test. Pipelines in the process equipment piping system shall be tested together with this equipment.

2.7.4.8 The additional leakage test at the pressure equal to the working one shall be carried out with the use of air or inert gas after the strength and tightness tests, flushing and purging. Duration of the additional test shall not be less than 24 h for installed pipelines of the FPU/MODU/FOP oil-and-gas equipment and shall be stated in the technical documentation for each pipeline to be approved by the Register.

During periodical tests, as well as after repair involving welding and disassembly of the pipeline, the duration of test shall not be less than 4 h.

2.7.4.9 Results of the additional air leakage test of the installed process pipelines, which have been subjected to repair involving disassembly or welding, shall be considered satisfactory if the pressure drop rate does not exceed 0,1 % per hour for the pipelines conveying toxic substances and 0,2 % per hour for the pipelines conveying combustible gases and readily ignitable liquids.

2.7.5 Testing of fittings.

2.7.5.1 The fittings installed on the pipelines shall be subjected to hydraulic tests by the pressure in compliance with 21.1, Part VIII "Systems and Piping" of the Rules for the Classification and Construction of Sea-Going Ships.

2.7.5.2 After assembly, the fittings shall be tested for leakage by a hydraulic pressure equal to the design pressure.
3 REQUIREMENTS FOR THE SPECIAL PURPOSE SYSTEMS AND PIPING

3.1 SYSTEM FOR GATHERING OF WELL FLUIDS

3.1.1 Detachable connections of the underwater standpipe (riser) shall be arranged on FPU/MODU/FOP in such a way that in the event of their possible leakage ingress of oil and gas into the platform spaces is prevented.

3.1.2 Manifolds and piping with shut-off control and safety fittings shall be designed for the wellhead static pressure at the starting of a field development.

3.1.3 Non-return valves shall be installed on the well flowlines upstream of the manifolds.

3.1.4 The pipelines leading from the wellheads to inlet manifolds shall be laid in one tier.

3.1.5 The pipelines leading from the wellheads to the process plants shall be laid in one tier and designed for 1.5 times the working pressure. Well number and flow direction shall be marked by paint at the beginning and end of the pipeline.

3.1.6 Standpipes of the flowlines and air lines shall be secured to the FPU/MODU/FOP metal structures by clamps. The air lines and flowlines shall be arranged in such a way as not to cross gangways, working floors and other passageways.

3.1.7 Pipelines of the systems for gathering of well fluids shall comply with the requirements of 2.1, Part III "Systems for Production, Treatment, Gathering and Transportation of Well Fluids".
3.2 SYSTEMS FOR TREATMENT OF WELL FLUIDS

3.2.1 Passage of pipelines with combustible gases, readily ignitable and combustible liquids through accommodation, administrative and domestic and service spaces, control stations, as well as through air ducts and ventilating trunks is prohibited.

3.2.2 Use of pipelines to reduce overall resistance of antistatic earth conductors is prohibited.

3.2.3 Flange joints on the process pipelines may be permitted only in places where fittings are installed or the pipelines are connected to apparatus fittings and other equipment with counterflanges, as well as in those sections where periodical disassembly is required to carry out cleaning and repair of the pipelines.

3.2.4 Flange joints shall be arranged in places open and accessible for visual examination, maintenance, disassembly, repair and mounting. Flange joints of the pipelines with combustible gases, readily ignitable and combustible liquids shall not be arranged above the places intended for passage of people and above the working platforms.

3.2.5 Manual- and remote-controlled fittings used on the process equipment handling combustible gases, readily ignitable and combustible liquids shall have leak-tightness class for seals not lower than B according to GOST R 54808-2011.

3.2.6 When laying pipelines with hazardous media, pipes with readily ignitable liquids shall be located below the gas pipes.

3.2.7 Pipelines of the systems for treatment of well fluids shall comply with the requirements of 2.4, Part III "Systems for Production, Treatment, Gathering and Transportation of Well Fluids".
3.3 GAS WITHDRAWAL SYSTEM

3.3.1 The pipelines of the gas withdrawal system located on the open decks and spaces shall be thermally insulated and/or fitted with heating tracers in order to prevent condensation/crystallization of substances including formation of ice plugs and hydrates.

3.3.2 The pipelines of gas withdrawal system shall be of the minimum length and shall be laid with the minimum number of bends and detachable joints.

3.3.3 The pipelines of gas withdrawal system shall comply with the requirements of 2.6, Part III "Systems for Production, Treatment, Gathering and Transportation of Well Fluids".
3.4 SYSTEMS FOR TRANSPORTATION OF WELL FLUIDS

3.4.1 The pipelines for transportation of oil, gas and condensate shall be provided with pig launchers.

3.4.2 The pipelines leading to production standpipes for transportation of well fluids from FPU/MODU/FOP shall be equipped with the remote-controlled valves, which are actuated automatically by the ESD system and provide shutdown of the relevant pipelines.

3.4.3 The pipelines for transportation of well fluids shall comply with the requirements of 2.12, Part III "Systems for Production, Treatment, Gathering and Transportation of Well Fluids".

3.4.4 Parameters of standpipes, pipeline fittings (safety and shut-off fittings, T-joints, branch pipes), pipeline bends (outlets) and pig launchers/receivers leading to subsea pipelines shall be arranged so as to ensure the minimum flow section for the safe passing of pigs throughout the piping system.

Protrusions of the gratings of pipeline fittings and non-compliance with the minimal permissible bending radii of the pipeline axis are prohibited. It is recommended to ensure the identical internal diameter through the entire length of the piping system where pigs are used.

3.4.5 Electrical insulating joints forming part of the production standpipes of offshore oil-and-gas facilities shall comply with 7.5, Part I "Subsea Pipelines" of the Rules for the Classification and Construction of Subsea Pipelines.¹

¹Hereinafter — the SP Rules.
3.5 STATIONS FOR RECEPTION/DELIVERY OF FLUIDS AND FREE-FLOWING MATERIALS BETWEEN FPU/MODU/FOP AND SUPPORT VESSEL

3.5.1 Hose stations for reception/delivery of base fluid for drilling mud (mineral oil), waste drilling mud and drilling waste water, open-cut hazardous drainage, process fresh water, as well as for provision of loading of free-flowing materials (weighting agent, cement) and their transportation into the pneumatic conveying system from support vessel to FPU/MODU/FOP shall comply with the requirements of the Chapter.

3.5.2 As a rule, the equipment set of the hose station includes:
- reels with hydraulic, pneumatic or electric drive;
- frame with the foundation and service platforms made of metallic profiles enabling fixation to the FPU/MODU/FOP metal structures;
- local control panel;
- emergency braking and manual releasing brake devices;
- components, shut-off and control valves, flexible hose assemblies (hoses) of corresponding type.

The hose stations designed for use in harsh climatic conditions at low temperatures may be of a container type.

3.5.3 Each hose station shall be fitted with its own local control panel installed on the station frame. The panel is intended to control drives of each reel independently in modes "hose pay-out" and "hose pay-in" with an emergency stop function.

3.5.4 The hose stations shall be equipped with measuring devices (pressure gauges), earthing devices and devices for protection against static electricity to provide reliable and failure-free operation of the station in all operating conditions.

3.5.5 Equipment of the hose station shall be reliable during all service life, provide safe manufacture, installation and operation, possible examination and repair, easy hose operation.

3.5.6 Reels for liquid cargoes shall be equipped with ventilation valves preventing the hose degassing during drainage of residual amount of fluids discharged to the support vessel upon completion of transfer operation.

3.5.7 The reels for reception/delivery of explosive and flammable media shall be fitted with non-return and ball valves with counter flanges, gaskets and fasteners for purging hoses with inert gas (nitrogen).

3.5.8 The service platforms shall be safe, specially designed to provide clear vision during hose application, easy maintenance of the equipment and easy access during maintenance of the equipment assemblies.

3.5.9 Each reel shall be equipped with the safety protectors for moving parts.

3.5.10 Each unit of reels for hoses’ pay-in shall be equipped with a driving gear and automatic fail-safe brake (with manual releasing brake device) stopping the drum when supply of air, hydraulic fluid or electricity is interrupted.

3.5.11 During design of the hose stations located in hazardous areas, except for requirements in 3.5, requirements in 2.11, Part X "Electrical Equipment" of the FPU/MODU Rules shall be met.

3.5.12 Flexible hose assemblies (hoses) shall be manufactured specially for their operation in the specified climate type with specified consumption and flow direction. The applied hoses shall comply with the requirements in 2.3.2.

3.5.12.1 The hose construction shall have the relevant strength properties with regard to the axial loads and possibility to restore working parameters after compression and torsion and to provide reception/delivery of liquid media with the specified consumption considering possible station elevation above the support vessel (possible hose degassing during drainage).

3.5.12.2 The hose and reel structure shall provide electrical connection between the FPU/MODU/FOP hulls and support vessel prior to transfer of pumped fluids.
3.5.12.3 Hoses shall be delivered with the components listed below:
connection (quick coupling) providing possibility of emergency (quick) hose disconnection from support vessel in case of uncontrollable wreckage and self-closing device (non-return valves on the hose ends) in this connection that shall prevent spills of the working medium after abnormal disconnection from suction device of the support vessel. In all hoses and reels of stations the self-closing devices shall have the structure providing proper conveying of working media;
hinge connection preventing the hose torsion;
lifting yoke with a lock or other device to be hooked by a crane and enabling to transfer hose free end to the support vessel.

3.5.13 Stations for reception/delivery of liquid cargoes shall be provided with heating with thermal insulation of pipeline sections for each liquid media from connection point on the FPU/MODU/FOP pipeline to the drained hose in case when hose stations are designed for operation at negative temperatures. If the heating is unavailable, the drainage of pipelines designed for pumping of freezing fluids shall be provided.

3.5.14 Hose station shall include the traps preventing entry of potentially hazardous transferred cargoes into the environment.

3.5.15 Requirements for the minimum scope of checks and tests of hose stations when the larger scope is not provided in the RS-approved documentation:
visual examination, check of the equipment completeness and linear dimensions in accordance with the approved documentation;
functional check of the control panel indication;
functional check of emergency lighting (in case of container type);
check of alarm systems (if available);
check of electrical heating systems (if available);
start of hose station in modes "hose pay-out" and "hose pay-in" at the minimum and maximum speed without suspended test load;
start of hose station in modes "hose pay-out" and "hose pay-in" at the minimum and maximum speed with suspended test load and check of the limit switch activation;
control of automated brake functioning at disconnection of power drive and check of manual releasing brake device;
check of insulation resistance of current-conducting circuits;
check of protective and/or anti-static earthing.
PART VI. CARGO-HANDLING GEAR

1 GENERAL

1.1 APPLICATION

1.1.1 The requirements of the present Part apply to the following:
cargo-handling gear installed on FPU/MODU/FOP and designed for loading, unloading, moving of
loads essential for operation of FPU/MODU/FOP from one position to another and also conveyance of the
personnel (refer to 1.5.7.7 of the Rules for the Cargo Handling Gear of Sea-Going Ships);
process cargo-handling gear.

1.1.2 Cargo-handling gear mentioned in 1.1.1 shall also meet the requirements of the Rules for the
Cargo Handling Gear of Sea-Going Ships, to the extent as applicable.
1.2 GENERAL PROVISIONS

1.2.1 General provisions relating to the procedure of technical supervision of the cargo-handling gear mentioned in 1.1.1 of FPU/MODU/FOP during their manufacture, mounting and operation, as well as the requirements for the amount of technical documentation submitted to the Register for review and approval shall comply with the requirements of Sections 3 — 10, Part I "General Regulations for Technical Supervision".
2 REQUIREMENTS FOR SPECIAL PURPOSE HOISTING CRANES

2.1 The cranes used for moving loads or conveyance of the personnel on FPU/MODU/FOP shall meet the requirements of this Section and the requirements of the international standards.

2.2 Load lifting (lowering) speed V, in m/s, shall not be less than

$$V = 0.1(H_{1/3} + 1) \quad (2.2)$$

where $H_{1/3}$ = the significant wave height, in m (with 13 % probability), in compliance with the FPU/MODU/FOP design approved by the Register.

2.3 For a special purpose cargo crane the dynamic factor for calculation of the crane foundation (base) shall be assumed at least 1,3 times greater than the dynamic factor used for calculation of an ordinary ship's crane.

2.4 The crane used for conveyance of the personnel shall satisfy the following requirements (refer also to 1.5.7.7 of the Rules for the Cargo Handling Gear of Sea-Going Ships):

- winches of the crane used for conveyance of the personnel shall be provided with two braking systems, one of which shall be manually operated;
- safe working load of the crane shall be at least twice the design load incorporating weight of all the appliances (stage, loose gear), as well as the weight of the personnel being conveyed;
- if the load lowering speed is more than 0,3 m/s, the control and monitoring system shall provide soft landing of the stage;
- in the event of emergency failure of the crane drive, the crane shall be automatically brought in a position to provide lowering of the stage with the personnel, and the safe lowering of the stage shall be provided.

2.5 The special purpose crane shall be provided with the following:

- permanent wireline tension system, if the safe working load of the hook is less than 25 t;
- wireline slack detector;
- load indicator or load moment indicator;
- visual and sound alarm system activated when the load or capsizing moment comprises 90 % of the safe working load or permissible capsizing moment.

2.6 For the cranes designed for loading/unloading of the supply vessels in seaway, a system for emergency release of the cargo hook shall be provided, which permits the discharge of the wireline in the event of unexpected overloading of the crane due to the hook or load catching at the supply vessel.

2.7 The permanent tension system (movement compensator) shall maintain the tension of not higher than 1,5 t.

2.8 Winch drums shall be provided with a wireline slack detector, which shall be activated automatically when the wireline is slackened in the process of lowering.

2.9 The cabin of the special purpose crane shall meet the following requirements:

- the cabin shall provide an operator with a sufficient view of the working zone, including the hook and its position;
- the cabin shall be provided with anti-freezing and anti-fog and sweating means;
- the cabin shall be provided with windscreen wipers;
- the cabin shall be provided with heaters, fan and air conditioner;
- the cabin shall be of fire-proof design;
- the cabin shall be provided with an arrangement for emergency evacuation of the operator.

2.10 Each crane, after assembly at the manufacturer's, shall be subjected to functional tests according to the program approved by the Register. The tests shall be witnessed by the Surveyor to the Register. A copy of the approved program of functional tests shall be kept in the crane's operating manual.
2.11 After installation on FPU/MODU/FOP, the crane shall be subjected to full-scale tests under operational conditions according to the program agreed by the customer, approved by the Register and in the presence of the Surveyor to the Register and a representative of the customer. The program of functional tests and also the program of tests after installation on FPU/MODU/FOP shall be developed by the crane supplier and approved by the Register.

2.12 In the process of operation the crane shall be subjected to full-scale tests under operational conditions with the following frequency:
 after initial installation on FPU/MODU/FOP;
 after any significant re-equipment, as well as after repair or replacement of the basic load-bearing structures (supports, boom ropes, framework basement).

2.13 The program of the tests conducted in the process of crane operation shall be agreed with the Register.

2.14 Classification periodical tests shall be conducted not less than once in five years.

2.15 To perform repair and cargo-handling operations in the working spaces of the drilling rig and the systems for production, treatment and transportation of well fluids of FPU/MODU/FOP, process cargo-handling gear with required safe working load shall be provided.
3 REQUIREMENTS FOR SPECIAL PURPOSE CARGO-HANDLING GEAR

3.1 BLOCK-AND-TACKLE SYSTEM

3.1.1 Casings of the equipment forming a part of the block-and-tackle system (crown block, block-and-tackle unit, hook) shall be marked with the allowable safe working load.

3.1.2 Threaded connection of the hook shank with the thrust nut shall be fitted with a device preventing spontaneous unscrewing of the nut.

3.1.3 The main hook arm shall have a self-closing device to prevent the swivel link from going out of the mouth. The device shall be provided with an arrangement for its forced opening.

3.1.4 Design of the hook shall prevent spontaneous falling-out of the elevator links from the side arms.

3.1.5 The hook shank shall be provided with an arrangement to stop the hook rotation when required by the process.

3.1.6 Design of the hook and block-and-tackle unit shall provide the uniform load distribution on the links suspended thereon.

3.1.7 Clearances between the housing and sheave flanges of the block-and-tackle system shall not be more than 0.25 of the wireline diameter.

3.1.8 To ensure stability of the block-and-tackle unit with the hook or automatic elevator when travelling without load, its center of gravity shall be located below the wireline sheave axis.

3.1.9 Design of the fitting device and pass-by of the fixed end of the wireline shall:
 provide the possibility of pass-by and replacing of the wireline without throwing the coils off the drum (except for mobile drilling units);
 prevent overlapping of the wireline coils on the drum in case of the wireline slack.
3.2 BLOCK-HOOK AND SWIVELS

3.2.1 The block-hook is designed for suspension, by means of bails with elevator, of the drill strings and swivel in the process of drilling and round-trip operations, to hold awei gh a casing string for running it into the well, as well as during hook-up, commissioning and repair. The safe working load of the block-hook shall correspond to that of the crane.

3.2.2 The hook shank shall be provided with an arrangement to stop the hook rotation when required by the process.

3.2.3 The main hook arm shall have a self-closing device to prevent the swivel link from going out of the mouth. The device shall be provided with an arrangement for its forced opening. Design of the hook shall prevent spontaneous falling-out of the elevator links from the side arms.

3.2.4 Turning of the swivel link shall be limited within the range of \(25 - 50^\circ\) towards the side opposite the swivel gooseneck.

3.2.5 Design of the swivel shall provide safe replacement of the washpipe seals on the drilling rig (without disconnection of branch pipe and drilling mud hose).

3.2.6 Sealing elements in the swivel hydraulic section shall be designed for the pressure equal to 1.5 times the system working pressure.

3.2.7 Connecting thread of the swivel stem shall be of left-handed type.
3.3 WINCHES

3.3.1 In order to carry out repair and handle operations in the process rooms and on the deck of the FPU/MODU/FOP drilling rig, the pneumatic and hydraulic winches, telfers and robot arms with appropriate capacity shall be provided.

3.3.2 Winch drums shall be equipped with the line slack detection device which shall operate automatically if during lowering the line is slacked.

3.3.3 Cargo winches of the drilling floor and racking board as well as other winches not associated with transfer of the personnel shall be equipped with a braking system.

3.3.4 The winches associated with transfer of the personnel shall be equipped with two braking systems, one of which shall operate in automatic mode.

3.3.5 Allowable stresses when calculating the load bearing elements of the cargo winches shall not exceed 0.3 of the material yield strength. Allowable stresses when calculating the load bearing elements of the cargo winches associated with transfer of the personnel shall not exceed 0.2 of the material yield strength. When calculating the strength of elements made of cast iron, margin of safety relative to the allowable stresses shall be doubled.
3.4 WELL LOGGING HOISTS

3.4.1 Well logging hoists shall be designed for round-trip operations with the drill-hole logging instruments and wireline logs at geophysical well logging during their drilling and operation.

3.4.2 From the workplace of the well logging operator, the wellhead sealing equipment components, guide roller and cable travel path between the hoist and the guide roller shall be clearly visible.

3.4.3 Automatic laying of the logging cable on the hoist winch drum shall be provided without thinning and overlapping of wraps.

3.4.4 The hoisting winch shall be equipped with a braking system that provides smooth braking when the cable lowering into the well and its holdback at stops, preventing unauthorized descent or cable lifting.

3.4.5 The hoisting winch drum shall be made of non-magnetic material.

3.4.6 The drum capacity shall be such that when the instrument reaches the downhole, at least half of the last row of the cable wraps shall remain on the drum.

3.4.7 The control panel shall be equipped with the depth, tension and travel speed indicators of the logging cable.

3.4.8 Intercommunication systems shall be provided for transmitting information to the personnel at the wellhead.

3.4.9 The cable travel paths between the hoist and the wellhead shall be lit.

3.4.10 The following requirements shall be imposed on the foot and guide rollers (block) devices:

1. radius of the guide groove on the roller ring surface shall not exceed the logging cable radius by more than $\pm 5\%$;

2. strength of the roller fastening elements shall exceed the rated tensile load of the applied logging cable by at least 3 times for the guide roller and at least 4 times for the foot roller.

3.4.11 Requirements for the minimum scope of checks and tests, in case a larger scope is not prescribed in the documentation approved by the Register:

- external examination and check of linear dimensions;
- check of the cable length meter (wire);
- check of the cable tension indicator (wire);
- maximum wireline pull;
- checking the travel speed range of the cable (wire);
- check of alarm systems (if available);
- checking the lockout system (safety locks for tension and depth);
- checking the insulation resistance check of current-conducting circuits (electric resistance shall be at least 5 MOhm);
- measurement of protective earthing (electric resistance shall not exceed 0.02 Ohm).
PART VII. HEAT EXCHANGERS AND PRESSURE VESSELS

1 APPLICATION

1.1 The requirements of the present Part apply to the heat exchangers and pressure vessels incorporated in the FPU/MODU/FOP oil-and-gas equipment.

1.1.1 Separators:
 - of drilling mud;
 - of oil treatment systems;
 - of gas/condensate treatment systems.

1.1.2 Multiphase separators.

1.1.3 Electric dehydrators.

1.1.4 Desalters.

1.1.5 Mass exchanger columns.

1.1.6 Pig launchers/receivers.

1.1.7 Slug catchers.

1.1.8 Tanks included in the system for gathering and treatment of well fluids and operated under pressure above 0.07 MPa.

1.1.9 Heat exchangers:
 - plate-type heat exchangers;
 - shell-and-tube heat exchangers;
 - capacitive heat exchangers.

1.1.10 Process water treatment plants.

1.2 The requirements of the OGE Rules do not apply to thermal fluid boilers, pressure vessels for compressed air and inert gases (nitrogen) of various, including process, application, which shall comply with the applicable requirements of Part IX "Boilers, Heat Exchangers and Pressure Vessels" of the MODU/FOP Rules.
2 GENERAL

2.1 General provisions relating to the procedure of technical supervision over heat exchangers and pressure vessels of the oil-and-gas equipment of FPU/MODU/FOP during their manufacture, mounting and operation, as well as the requirements for the amount of technical documentation submitted to the Register for review and approval shall comply with the requirements of Sections 3 — 10, Part I "General Regulations for Technical Supervision".

2.2 Subject to the Register technical supervision are the heat exchangers and pressure vessels specified in 1.1 with a working pressure of 0.07 MPa and above, capacity of 0.025 m3 and above, which product of pressure value, in MPa, by capacity, in m3, is equal to 0.02 and more.

2.3 Scope of technical supervision, materials used, strength of structural elements, welding and heat treatment, as well as the extent of tests of the heat exchangers and pressure vessels specified in 1.1 of the present Part of the OGE Rules shall comply with the requirements of Sections 1, 2 and 6, Part X "Boilers, Heat Exchangers and Pressure Vessels" of the Rules for the Classification and Construction of Sea-Going Ships, unless otherwise specified in the below sections of the OGE Rules.

2.4 Strength calculations for the heat exchangers and pressure vessels shall be made in compliance with the requirements of Section 2, Part X "Boilers, Heat Exchangers and Pressure Vessels" of the Rules for the Classification and Construction of Sea-Going Ships, the standards recognized by the Register or the technical documentation approved by the Register.
3 REQUIREMENTS FOR HEAT EXCHANGERS AND PRESSURE VESSELS

3.1 MATERIALS

3.1.1 General.
3.1.1.1 The materials intended for manufacture of assemblies and parts of the heat exchangers and pressure vessels shall comply with the requirements of the standards recognized by the Register and the technical documentation approved by the Register.
3.1.1.2 The chemical composition of steel shall be in accordance with standards or specifications agreed with the Register proceeding from the required mechanical properties, including those at elevated design temperature, at that the content of base elements shall not exceed the values given in 3.3, Part XIII "Materials" of the Rules for the Classification and Construction of Sea-Going Ships.
3.1.1.3 The steel shall be killed. Using of rimming steel is not permitted. In technically justified cases semi-killed steel and steel treated with grain-refining elements may be used.
3.1.1.4 Using of cladding and deposited metals may be permitted for manufacture of heat exchangers and pressure vessels, provided that the materials of the base material, cladding metal and deposited metals are manufactured in compliance with the standards/specifications agreed with the Register.
3.1.1.5 Use of the electric-welded pipes with longitudinal or spiral weld may be permitted in compliance with the standards/specifications agreed with the Register, provided that the weld is subjected to non-destructive testing throughout the length. Seamless or welded pipes shall be subjected to hydraulic tests in compliance with the standards/specifications agreed with the Register. The hydraulic tests of the seamless pipes may be omitted if the pipes are subjected to non-destructive testing over their whole surface.
3.1.1.6 Cladding and deposited plates and forgings with deposits shall be subjected to ultrasonic testing or testing by other methods which make it possible to reveal separation of the cladding (deposited) metal from the base metal, as well as discontinuities and delaminations of the forging metal. Scope of quality assessment is established in compliance with the standards/specifications agreed with the Register. Bimetal plates of more than 25 mm in thickness, intended for manufacture of the vessels operating under a pressure above 4,0 MPa shall be subjected to complete ultrasonic testing or testing by the equivalent methods.
3.1.1.7 Carbon and low-alloyed steel plate of more than 60 mm in thickness intended for manufacture of the vessels operating under a pressure above 10,0 MPa shall be subjected to ultrasonic testing or testing by the equivalent methods.
3.1.1.8 Carbon, low-alloyed and alloyed steel forgings intended for operation under a pressure in above 6,3 MPa and having one of the overall dimensions more than 200 mm and a thickness more than 50 mm shall be subjected to ultrasonic testing or testing by the equivalent method.
3.1.1.9 The use of grey and ductile cast iron for manufacture of components and shells of heat exchangers and pressure vessels under ambient temperature above 220 °C is not permitted.

3.1.2 Mechanical properties.
3.1.2.1 The mechanical properties at room and design temperatures shall comply with the standards/specifications.
3.1.2.2 The steel properties shall be confirmed by the following tests:
 tensile test with determination of tensile strength (physical or nominal), yield stress and elongation; bend test;
 impact test (KCU or KCV) with determining the impact strength KCU or KCV or impact energy KU or KV on longitudinal or transverse samples with the U- or V-shaped notches.

At the request of the Register, other types of tests may be carried out to confirm the possibility of using steel under specified operational conditions.
3.1.2.3 Sampling and extent of tests shall comply with the requirements of 3.3, Part XIII "Materials" of the Rules for the Classification and Construction of Sea-Going Ships.

3.1.3 Materials for fittings of heat exchangers and pressure vessels.

3.1.3.1 The fittings of heat exchangers and pressure vessels shall be manufactured in compliance with the standards/specifications approved by the Register.

3.1.3.2 Parts and fittings of the heat exchangers and pressure vessels of up to 1000 mm in diameter and working pressure up to 1.0 MPa may be manufactured of spheroidal or nodular graphite cast iron of ferrite structure in compliance with Table 3.9.3.1, Part XIII "Materials" of the Rules for Classification and Construction of Sea-Going Ships.

3.1.3.3 Use of copper alloys for the fittings of heat exchangers and pressure vessels is allowed at design medium temperature up to 250 °C and working pressure up to 1.6 MPa.
3.2 SURVEY OF HEAT EXCHANGERS AND PRESSURE VESSELS DURING MANUFACTURE

3.2.1 General.

3.2.1.1 The heat exchangers and pressure vessels shall be manufactured at the firms under the Register technical supervision with issue of the relevant documents listed in the Nomenclature.

3.2.2 Technical supervision of the Register at the manufacturers'.

3.2.2.1 General provisions relating to the procedure of technical supervision of the heat exchangers and pressure vessels of the FPU/MODU/FOP oil-and-gas equipment shall comply with Part I "General Regulations for Technical Supervision" of the Rules for Technical Supervision during Construction of Ships and Manufacture of Materials and Products for Ships.

3.2.2.2 The heat exchangers and pressure vessels shall be manufactured and the process operations shall be carried out under the Register supervision in compliance with the approved technical documentation, which is enlisted in 1.3.4, Part X "Boilers, Heat Exchangers and Pressure Vessels" of the Rules for the Classification and Construction of Sea-Going Ships.

3.2.2.3 Scope of surveys under the established production conditions for manufacture of parts, devices and products as a whole involves review of documentation on materials and surveys:

1. external surface of the material and item;
2. machining of parts;
3. welding operations;
4. manufacture of parts and assemblies;
5. assembly of products;
6. hydraulic tests.

3.2.2.4 Welded shells, bottoms and casings of the heat exchangers and pressure vessels shall be manufactured in compliance with the procedure developed by the manufacturer and approved by the Register.

3.2.2.5 The parts and units shall be assembled within the tolerances for clearances between the components in compliance with the technical documentation approved by the Register. The attainment of the required conjunction between the components of a product through excessive interference being applied by the assembling fixtures is not permitted.

Where necessary, the components may be fitted by heating.

3.2.2.6 After manufacture or assembly, all the components of the heat exchangers and pressure vessels shall be subjected to hydraulic tests in compliance with the requirements of 1.7, Part X "Boilers, Heat Exchangers and Pressure Vessels" of the Rules for the Classification and Construction of Sea-Going Ships. The value of the test pressure shall be such that the equivalent stress in the pipeline wall at the test pressure does not exceed 90% of the yield stress of the material at the test temperature.

3.2.2.7 The vessels, which manufacture is completed at the installation site and which are transported to the installation site in parts shall be subjected to hydraulic test at that site. The hydraulic test of the vessels to be vertically installed may be carried out with the vessels in horizontal position, provided that the strength of the vessels shell is ensured, for which purpose the strength calculation shall be made by the vessel designer with due regard to the vessel position adopted in the process of the hydraulic test.

3.2.2.8 Time of the vessel exposure to test pressure shall be set in the technical documentation approved by the Register. The time of exposure to test pressure shall not be less than:

10 min for wall thicknesses up to 50 mm;
20 min for wall thicknesses above 50 and up to 100 mm;
30 min for wall thicknesses above 100 mm.
3.3 Survey of Heat Exchangers and Pressure Vessels during Construction of FPU/MODU/FOP

3.3.1 General.
3.3.1.1 The survey of piping systems during the FPU/MODU/FOP construction shall be carried out in compliance with Section 9, Part I "General Regulations for Technical Supervision".

3.3.2 The Register technical supervision at the manufacturer's during installation at FPU/MODU/FOP.

3.3.2.1 The heat exchangers and pressure vessels shall be mounted under the Register supervision in compliance with the technical documentation approved by the Register.

3.3.2.2 The Register surveys during mounting of the heat exchangers and pressure vessels shall generally involve the following.

3.3.2.2.1 For heat exchangers:
 .1 checking of installation on foundation and securing;
 .2 operational testing.

3.3.2.2.2 For pressure vessels:
 .1 checking of installation on foundation and securing;
 .2 internal survey;
 .3 operational testing.

3.3.2.3 Internal survey of the heat exchangers and pressure vessels shall be carried out prior to their preparation for operational testing to confirm that all their components are in proper technical condition in compliance with the approved technical documentation.

3.3.2.4 The heat exchangers and pressure vessels shall be operationally tested according to the program approved by the Register. The heat exchangers shall be operationally tested together with the support systems, pipelines and devices.

 At that the following shall be tested: mounting quality, operation with specified parameters of the working medium, operation of fittings, instrumentation and regulating devices, adjustment of safety devices.

3.3.2.5 Operational testing of the pressure vessels involves checking of their installation quality and performance reliability.

 At that the following shall be tested: operability of fittings and regulating devices, as well as capacity and adjustment of safety devices.
3.4 SURVEY OF HEAT EXCHANGERS AND PRESSURE VESSELS OF FPU/MODU/FOP IN SERVICE

3.4.1 Initial surveys.
3.4.1.1 Heat exchangers and pressure vessels of the oil-and-gas equipment of FPU/MODU/FOP constructed without the Register technical supervision, as well as during surveys stated in 10.2.2, Part I "General Regulations for Technical Supervision" shall be submitted to the initial survey.
3.4.1.2 During initial survey, the heat exchangers and pressure vessels shall be subjected to internal survey, hydraulic test and external examination.
3.4.1.3 The surveys specified in 3.4.1.2 may be credited within the intervals specified when certificates or permissions of other classification or supervisory body are issued. In this case the dates of subsequent surveys and tests shall be counted from the dates stated in the certificates with due regard to subsequent concurrency with periodical surveys.

3.4.2 Periodical surveys.
3.4.2.1 Scope of periodical surveys of the heat exchangers and pressure vessels of the FPU/MODU/FOP oil-and-gas equipment shall comply with the requirements of Section 10 and Table 10.2.7, Part I "General Regulations for Technical Supervision".
3.4.2.2 The heat exchangers and pressure vessels operating with the medium, which causes material corrosion at a rate not more than 0.1 mm/year, shall be subjected to external examination and internal survey not less than once in two years and to hydraulic test by a test pressure once in eight years.
3.4.2.3 When the corrosion rate of the heat exchanger and pressure vessel material exceeds 0.1 mm/year, annual external examinations and internal surveys shall be carried out.
3.4.2.4 Hydraulic tests of the heat exchangers and pressure vessels shall be carried out at a test pressure p_t, in MPa, equal to

$$p_t = 1.25 p \frac{\sigma_{20}}{\sigma_t}$$

(3.4.2.4)

where
- p = design pressure, in MPa;
- σ_{20} = the allowable material stress at 20 °C, in MPa;
- σ_t = the allowable material stress at the maximum above-zero design temperature, in MPa.

3.4.2.5 For the heat exchangers and pressure vessels inaccessible for the overall internal survey, as well as after major repair, the test pressure shall be assumed to be equal to $1.5p$.

Rules for the Oil-and-Gas Equipment of FPU, MODU and FOP (Part VII)

146
PART VIII. MATERIALS AND WELDING

1 GENERAL

1.1 APPLICATION

1.1.1 The requirements of the present Part apply to the materials and welding used in manufacture, mounting and repair of the FPU/MODU/FOP oil-and-gas equipment accessories being the items of the Register technical supervision, except those specified in 1.1.2.

1.1.2 The requirements for the materials and welding of the FPU/MODU/FOP drilling derrick structures and derrick substructures shall comply with 2.1.2.1 and 2.1.2.2, Part II "Drilling Rig Systems and Equipment".
1.2 GENERAL REQUIREMENTS

1.2.1 The materials used for manufacture of the systems, arrangements and mechanisms of the FPU/MODU/FOP oil-and-gas equipment shall comply with the requirements in Part XIII "Materials" of the Rules for the Classification and Construction of Sea-Going Ships, Part XII "Materials" of the MODU/FOP Rules, Part XIII "Materials" of the FPU Rules and Parts V, VII of the OGE Rules, to the extent as applicable.

1.2.2 During manufacture of the materials and products for the FPU/MODU/FOP oil-and-gas equipment, the Register may permit the use of the normative and technical documents of foreign classification societies, other recognized national and international standards, rules and regulations.

1.2.3 General provisions relating to the procedure of technical supervision of materials and welding for oil-and-gas equipment of FPU/MODU/FOP during their manufacture, mounting and operation shall comply with the requirements of Sections 3 — 10, Part I "General Regulations for Technical Supervision".

1.2.4 The materials and products used for manufacture of the pipelines of systems, heat exchangers and pressure vessels forming part of the FPU/MODU/FOP oil-and-gas equipment and listed in the Nomenclature (refer to Table 7.1, Part I "General Regulations for Technical Supervision") shall be certified by the Register and supplied with the documents according to 8.1.6, Part I "General Regulations for Technical Supervision".

1.2.5 The materials used for manufacture of the oil-and-gas equipment systems, arrangements and mechanisms shall provide the reliable operation of that equipment within its design service life with regard to the specified operational conditions (design loading, the minimum and maximum design temperature, rate and frequency of loading variations, fatigue strength), a composition and nature of a medium (corrosiveness, toxicity, etc.), and also the effect of the environment and other factors.

1.2.6 For manufacture, mounting and repair of the systems, mechanisms and arrangements for the FPU/MODU/FOP oil-and-gas equipment, the materials, which are specified in the Register-approved project and comply with the current normative documents, shall be used.

1.2.7 When performing welding operations during manufacture, mounting and repair of the FPU/MODU/FOP oil-and-gas equipment, the requirements in Part XIV "Welding" of the Rules for the Classification and Construction of Sea-Going Ships, Part XIII "Welding" of the MODU/FOP Rules and Part XIV "Welding" of the FPU Rules shall be met.

1.2.8 Welding consumables used in welding operations during manufacture, mounting and repair of the FPU/MODU/FOP oil-and-gas equipment shall be approved by the Register (refer to 8.2.5, Part I "General Regulations for Technical Supervision") in compliance with the requirements in Section 4, Part XIV "Welding" of the Rules for the Classification and Construction of Sea-Going Ships.

1.2.9 Welding processes used during manufacture, mounting and repair of the FPU/MODU/FOP oil-and-gas equipment (refer to 8.2.6, Part I "General Regulations for Technical Supervision" of the OGE Rules) shall be approved in compliance with the requirements in Section 6, Part XIV "Welding" of the Rules for the Classification and Construction of Sea-Going Ships.

1.2.10 Welders approved by the Register for welding operations during manufacture, mounting and repair of the FPU/MODU/FOP oil-and-gas equipment shall be certified in compliance with the requirements in Section 5, Part XIV "Welding" of the Rules for the Classification and Construction of Sea-Going Ships.

1.2.11 The Register may take into account approval of the welding process and certification of welders by another classification organization or competent body, or results of weld joint tests witnessed by these organizations.
2 REQUIREMENTS FOR OIL-AND-GAS EQUIPMENT MATERIALS AND WELDING

2.1 REQUIREMENTS FOR MATERIALS IN CONTACT WITH CORROSIVE MEDIA

2.1.1 The equipment of a drilling mud system, systems for production and treatment of the FPU/MODU/FOP well fluids during operations on a sea shelf in the fields, containing hydrogen sulphide and other corrosive media, shall be manufactured of the materials, which provide serviceability and durability in these media or shall be provided with a reliable inhibitor or special protection.

2.1.2 Materials for an ordinary or resistant to sulphide corrosion cracking design shall be selected with regard to the process parameters and corrosive media characteristics.

2.1.3 Materials resistant to sulphide corrosion cracking shall be used at the corrosive media parameters specified in 1.3, Part V "Systems and Piping".

2.1.4 The oil-and-gas equipment materials resistant to sulphide corrosion cracking shall comply with the technical documentation approved by the Register and/or the standards recognized by the Register.

2.1.5 Resistance of materials to corrosive media shall be tested in compliance with the provisions in 4.3.9.5, Part I "Subsea Pipelines" of the SP Rules.
2.2 REQUIREMENTS FOR INSPECTION OF MATERIALS AND PRODUCTS

2.2.1 Procedures and extent of inspection of the materials and semi-finished products shall be determined on the basis of the technical documentation approved by the Register and/or the standards recognized by the Register.

2.2.2 Cladding and deposited plates, as well as forgings shall be subjected to ultrasonic testing or other methods of non-destructive testing, which provide detection of the delaminations of a cladding (deposited) metal from the base metal, as well as discontinuities and disintegrations of a forging metal. In this case the extent of quality assessment is established by the technical specifications approved by the Register for cladding or deposited plates and forgings, or by the standards recognized by the Register.

2.2.3 Carbon and low-alloy steel of over 60 mm in thickness used during manufacture of load-bearing elements for mechanisms and arrangements shall be subject to plate-by-plate ultrasonic testing or another equivalent method of testing for defects. The methods and standards of inspection shall comply with the requirements of the standards recognized by the Register.

2.2.4 Carbon, low-alloy and intermediate-alloy forgings intended for manufacture of high-loaded load-bearing elements and having one of its overall dimensions exceeding 200 mm and a thickness over 50 mm shall be subjected to a single ultrasonic testing or another equivalent method. Not less than 50 % of the test forging is subjected to testing for defects. Procedure and standards of inspection shall comply with the normative documentation. Where necessary, the percentage of inspection may be increased up to 100 %.
2.3 REQUIREMENTS FOR MATERIALS OF PIPELINE SYSTEMS

2.3.1 Requirements for materials of the steel pipelines of the FPU/MODU/FOP oil-and-gas equipment shall comply with the provisions of 2.2, Part V "Systems and Piping".

2.3.2 Requirements for materials of the pipeline fittings of the FPU/MODU/FOP oil-and-gas equipment shall comply with the provisions of 2.4, Part V "Systems and Piping".
2.4 REQUIREMENTS FOR MATERIALS OF HEAT EXCHANGERS AND PRESSURE VESSELS

2.4.1 Requirements for materials of the heat exchangers and pressure vessels forming part of the FPU/MODU/FOP oil-and-gas equipment shall comply with the provisions of 3.1, Part VII "Heat Exchangers and Pressure Vessels".
PART IX. SPECIAL REQUIREMENTS FOR ENSURING EXPLOSION AND FIRE SAFETY

1 ELECTRICAL EQUIPMENT

1.1 GENERAL

1.1.1 The requirements of this Section apply to the electrical equipment of the drilling rig and process system, which shall comply with the requirements in Part X "Electrical Equipment" of the MODU/FOP Rules to the extent as applicable.

1.1.2 Types of explosion protection and boundaries of explosion-hazardous areas wherein the equipment, arrangements, process vessels and pipelines of the systems of the FPU/MODU/FOP process system and drilling rig are installed, shall be established in compliance with the requirements in 2.9 — 2.11, Part X "Electrical Equipment" of the MODU/FOP Rules, 1.2 of the present Part of the OGE Rules, as well as with the requirements of the national supervisory bodies.

1.1.3 The electrical equipment, instrumentation and automated control systems, lighting, alarm and communication facilities of the drilling rig and process system designed for use in hazardous areas shall be provided with relevant certificates, which confirm their explosion proof design, issued by a special competent national or international body.
1.2 FPU/MODU/FOP HAZARDOUS AREAS

1.2.1 Depending on the frequency and duration of the presence of the explosive mixture of combustible gases, the FPU/MODU/FOP hazardous areas are divided as follows:

- zone 0: in which an explosive gas atmosphere is continuously present or present for long periods;
- zone 1: in which an explosive gas atmosphere is likely to occur in normal operation;
- zone 2: in which an explosive gas atmosphere is not likely to occur, and if it occurs as a result of accident or damage of the process equipment, it will exist for a short time.

This classification is developed by IEC (IEC 60079-10:1995) and applied in GOST system (GOST 30852.9-2002) for the RF and in ATEX system for EC countries.

Classification of explosion-hazardous areas by dust in the OGE Rules is omitted as unacceptable.

1.2.2 Other spaces are considered non-hazardous areas. Zones shall be spaces, which enclose one-type explosion protection equipment. One or another type of equipment in the particular hazardous zone shall be arranged in compliance with the requirements in 2.4, 2.11, Part X "Electrical Equipment" of the MODU/FOP Rules, as well as with the requirements of the national supervisory bodies.

1.2.3 The boundaries of hazardous areas are defined by the physical properties of explosive mixtures, parameters of the drilling rig and process system equipment and of the locations and spaces wherein oil and gas equipment is installed (refer also to 2.9, Part X "Electrical Equipment" of the MODU/FOP Rules).

1.2.4 The FPU/MODU/FOP locations and spaces, wherein explosive gas/air mixtures appear or may penetrate, shall be referred to one or another zone. The FPU/MODU/FOP areas are divided by explosion hazard in accordance with Table 1.2.4 as follows.

1.2.5 All the enclosed spaces of FPU/MODU/FOP, where the explosive mixtures of combustible gases or flammable liquid vapours may originate or penetrate therein, shall be provided with mechanical plenum-exhaust ventilation ensuring an air change in compliance with the requirements in 3.3.1, Part VIII "Systems and Piping" of the MODU/FOP Rules, 2.9.10, 2.9.11 Part III "Systems for Production, Treatment, Gathering and Transportation of Well Fluids" and 2.4.3 of the present Part of the OGE Rules and the requirements of the national supervisory bodies.

1.2.6 The gas detection and alarm system shall comply with the requirements in 7.9, Part X "Electrical Equipment" of the MODU/FOP Rules and the OGE Rules.

1.2.7 Arrangement of hazardous areas and spaces of FPU/MODU/FOP shall be approved by the Register and the national supervisory bodies at the designing stage.

1.2.8 Division into relevant hazardous areas of the spaces not mentioned in Table 1.2.4, which may be hazardous under certain conditions, shall be agreed with the Register.

1.2.9 Where doors or other openings are provided between the spaces mentioned in Table 1.2.4, the explosion hazard of any space with such openings is determined in accordance with 2.10, Part X "Electrical Equipment" of the MODU/FOP Rules.

<table>
<thead>
<tr>
<th>Nos.</th>
<th>Locations and spaces</th>
<th>Hazardous area zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Internal spaces of closed equipment and pipelines containing gas-saturated drilling mud, internal spaces of equipment and pipelines as well as other spaces which contain explosive oil-gas-air mixture permanently or for an extended period of time</td>
<td>0</td>
</tr>
<tr>
<td>1.2</td>
<td>Internal spaces of open process arrangements from the surface of drilling mud to upper openings</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Internal spaces of vent pipes discharging oil-gas-air mixture from spaces specified in 1.1 and 1.2 of the Table</td>
<td></td>
</tr>
<tr>
<td>Nos.</td>
<td>Locations and spaces</td>
<td>Hazardous area zone</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>2.1</td>
<td>Enclosed spaces wherein open process equipment and arrangements for oil and drilling mud storage are installed, which contain oil and petroleum gases</td>
<td>0</td>
</tr>
<tr>
<td>2.2</td>
<td>Internal spaces of trunks, ducts, chutes and other similar arrangements wherein combustible gases and oil vapours can not spread</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Spaces for storage of cargo hoses for transfer of inflammable liquids with a flash point of 61 °C (refer to 2.1.2, GOST 12.1.044)</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Paint lockers, stores for paints, solvents, etc.</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Enclosed spaces containing any part of the drilling mud circulating system between the wellhead and final degassing device that is provided with releasable connections, openings and other elements which may be sources of oil-gas-air mixture release</td>
<td>1</td>
</tr>
<tr>
<td>3.2</td>
<td>Enclosed or semi-enclosed spaces that are below the drilling floor and contain possible sources of oil-gas-air mixture release (e.g. from the nipple face of the drilling pipe)</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Open spaces under the drilling floor platting withing 1.5 m from the boundaries of possible sources of oil-gas-air mixture release, e.g. from the nipple face of the drilling pipe</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Enclosed spaces that are on the drilling floor and are not separated by a solid gas-tight floor from spaces specified in item 3.2 of the Table</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Area within 1.5 m from the boundaries of any openings in the equipment, which is a part of the gas saturated mud system, in open or semi-enclosed spaces, except those specified in item 3.2 of the Table, as well as the area within 1.5 m from exhaust ventilation outlets of zone 1 spaces or from any other opening for access to zone 1</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Ducts, pits and other similar structures in spaces which would otherwise be considered zone 2, but the removal of accumulated vapours and gases from which is impossible</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Enclosed spaces with closed process units and arrangements, equipment, apparatus, piping, components of shutdown and regulating devices for inflammable liquids and combustible gases</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Spaces of pump rooms for pumping of oil and waste waters with oil content above 150 mg/l</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Open areas within 5 m around open process arrangements, equipment, apparatus containing oil and petroleum gases or inflammable liquids</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Enclosed spaces, which contain open section of the mud circulating system from the final degassing discharge to the mud pump inlet pipe in the drilling mud tank (degassed drilling mud)</td>
<td>2</td>
</tr>
<tr>
<td>5.2</td>
<td>Open spaces within the boundaries of the drilling derrick up to a height of 3 m above the drill floor</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Semi-enclosed spaces below the drilling floor to the boundaries of the drilling derrick or beyond its boundaries to the extent of any enclosure (bulkhead), which is capable of trapping gases</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Open spaces below the drilling floor platting within 1.5 m beyond zone 1 specified in item 3.3 of the Table</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Spaces within 1.5 m beyond zone 1 specified in 2.5 and beyond the boundaries of semi-enclosed spaces specified in item 3.2 of the Table</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Open spaces within a radius of 1.5 m from the boundaries of exhaust ventilation outlets or openings for access to spaces of zone 2 from non-hazardous area</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Semi-enclosed drilling derricks to the height of their enclosure above the drilling floor or to a height of 3 m above the drilling floor, whichever is higher</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>Air-closed spaces (locks) between zone 1 and non-hazardous areas</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Open spaces within 3 m around closed process arrangements, equipment, apparatus as well as components</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Semi-enclosed spaces with process arrangements, equipment, apparatus; spaces within 15 m around a well axis from the lower structures of the platform to the entire length of a drilling derrick (in terms of explosion protection of the electrical equipment)</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Space under the rotary table of the drilling rig</td>
<td></td>
</tr>
</tbody>
</table>

1 The locations and spaces specified in items 2, 4, 6 of the Table are the constituents of hazardous areas only in cases where FPU/MODU/FOP shall comply with the requirements of the RF supervisory bodies (Rostekhnadzor).

2 Inflammable liquids are combustible liquids with a flash point of not more than 61 °C in closed cup or 66 °C in open cup of the phlegmatized mixtures without any flash point in the closed cup (refer to GOST 12.1.044).
1.2.10 The FOP rooms with open equipment containing drilling mud are classified by explosion hazard as spaces of zone 1 if the following is provided:

1. structural measures for decreasing the open areas of tanks and equipment;
2. inclusion of the drilling mud degassing equipment into the circulating system;
3. equipment of rooms with process ventilation systems complete with the main and emergency ventilation as well as local exhaust above the open surfaces of the equipment filled with drilling mud. The design capability of the system when activating the emergency ventilation shall provide removal of combustible vapours and/or gases of explosive concentration from the room in less than 1 h;
4. equipment of rooms with the system for detection of combustible vapours and/or gases of pre-explosive concentration. The system shall:

 automatically start emergency fans of the process ventilation system when explosive gases and/or vapours with concentration of 20 % of LFL are detected, and increase the air exchange rate up to 20 air changes in the protected rooms in order to decrease the concentration of explosive gases and/or vapours,
 automatically stop the drilling process and drilling pumps when explosive gases and/or vapours with concentration of 50 % of LFL are detected in order to cut off the supply of drilling mud, being a gas ingress source, to the protected rooms. The process ventilation shall continue to operate with the switched-on emergency ventilation in the air exchange mode decreasing the concentration of explosive gases and/or vapours in the room down to the non-explosive level;
5. continuous monitoring of gas component in the drilling mud and stoppage of drilling when this gas component exceeds 5 %, and switching the drilling mud flow to the separator of the blowout equipment system applying measures to detect the causes of mud saturation with gas.

1.2.11 Arrangement of doors or other openings between spaces of zones 1 and 0 is prohibited.

1.2.12 Enclosed rooms directly interconnected with a room of zone 0 refer to the rooms of zone 1 in the following cases:

 access is provided through self-closing gas-tight doors opening towards the space of zone 1;
 ventilation provides excessive pressure relative to zone 0;
 the main machinery control room is equipped with the alarm which is activated when the ventilation stops.

1.2.13 An enclosed room directly interconnected with zone 0 shall be considered as non-hazardous in the following cases:

 access is provided through double self-closing gas-tight doors that form an airlock where the mechanical supply ventilation creates air overpressure;
 ventilation provides excessive pressure relative to the explosive space;
 the main machinery control room is equipped with the alarm which operates when the ventilation stops.

1.2.14 An enclosed room directly interconnected with zone 1 shall be considered as non-hazardous in the following cases:

 access is provided through self-closing gas-tight doors opening into the non-hazardous zone;
 ventilation provides excessive pressure relative to the explosive space;
 the main machinery control room is equipped with the alarm, which is activated when the ventilation stops.

1.2.15 The sensors or sampling devices of the explosive concentration indicators shall be installed:

 in air intake points for ventilation of the FPU/MODU/FOP rooms;
 near each pump transferring highly flammable liquids;
 in the room where the drilling mud pumps are installed;
 near the wellhead at a height of maximum 0,5 m above the floor;
 above the open tank for drilling mud — at a distance of not more than 0,2 m above its upper edge as well as near the tank at a height of 0,5 m above the floor;
 near the shale shaker — at a distance of not more than 1 m from it at a height of not more than 0,5 m above it;
 near the process equipment — in places of possible vapour and gas sources at a height of not more than 0,5 — 0,7 m above the source for oil gases and at a height of not more than 0,5 m above the floor for oil vapours;
near the gas-distributing tank section — not less than in two points of the room at a height of not more than 0.5 — 0.7 m above the source;
in storerooms for highly flammable liquids and combustible gases — not less than one per room;
under the operating drill floor — in the area of the drilling mud diverter at a distance of not more than 1 m from it.

1.2.16 Sensors and sampling devices of gas detectors on hydrogen sulfide SPC shall be installed under the working drilling floor (in area of flow deviation) and in the rooms where hydrogen sulfide may occur.

1.2.17 The spaces with non-flanged pipelines for inflammable and combustible liquids are referred to the non-hazardous spaces, provided the pipes penetrate bulkheads/decks through the welded sockets and sleeves with non-flammable sealing preventing the ingress of explosive mixtures into the spaces and rooms.

1.2.18 The section of a transport pipeline (riser) for inflammable or combustible liquids located on FPU/MODU/FOP outside hazardous areas is recommended to provide with a protective casing to prevent liquid spreading in the event of the pipeline depressurization. In addition, provision shall be made for an alarm interlocked with the ESD system to warn about the presence of an explosive mixture within the space protected by the above casing.

1.2.19 Highly flammable liquids in the casing enclosure shall be discharged into an open-cut hazardous drainage system.

1.2.20 Electrical equipment, instrumentation and controls, lighting, alarm and communication devices designed to be used in explosive areas shall be of explosion proof type and have protection level corresponding to the explosive area, and explosion protection corresponding to the categories and groups of explosive mixtures.
1.3 CLASSIFICATION OF EXPLOSION-PROOF ELECTRICAL EQUIPMENT

1.3.1 Explosion-proof electrical equipment is classified according to the levels and types of explosion protection, groups and temperature classes.

1.3.2 Explosion-proof electrical equipment according to the levels of explosion protection is divided into the following:
 - level 0 — particularly explosion-proof electrical equipment;
 - level 1 — explosion-proof electrical equipment;
 - level 2 — high robustness explosion-proof electrical equipment.

1.3.3 Particularly explosion-proof electrical equipment means explosion-protected electrical equipment provided with additional means of explosion protection.

1.3.4 Explosion-proof electrical equipment provides explosion protection both under the standard operating conditions of electrical equipment and when damaged, except the damages to the means of explosion protection.

1.3.5 High robustness explosion-proof electrical equipment provides explosion protection only under the standard operating conditions of electrical equipment (in the absence of accidents and damages).

1.3.6 Explosion-proof electrical equipment according to the type of explosion protection is divided into the equipment, which is provided with the following:
 - flameproof enclosure (d);
 - protective gas-pressurized enclosure (p);
 - intrinsically safe electric circuit (i);
 - quartz-filled enclosure with live parts (q);
 - oil-filled enclosure with live parts (o);
 - special protection type due to item particulars (s);
 - any other type of protection (e).

1.3.7 Explosion-proof electrical equipment in terms of its admissibility for use in the zones shall comply with the requirements imposed upon the equipment associated with industrial gases and vapours (group II and subgroups IIA, IIB and IIC).

1.3.8 Depending on the maximum allowable temperature of a surface, the explosion-proof electrical equipment of group II is subdivided into the following temperature classes:
 - T1 (450 °C);
 - T2 (300 °C);
 - T3 (200 °C);
 - T4 (135 °C);
 - T5 (100 °C);
 - T6 (85 °C).

1.3.9 Explosion-proof electrical equipment shall be marked according to the marking below:
 - mark of the level of electrical equipment explosion protection (2, 1, 0);
 - mark classing electrical equipment as explosion-proof (Ex);
 - mark of the type of explosion protection (d, p, i, q, o, s, e);
 - mark of the group or subgroup of electrical equipment (I, II, IIA, IIB, IIC);
 - mark of the temperature class of electrical equipment (T1, T2, T3, T4, T5, T6).

1.3.10 Methods of testing explosion-proof electrical equipment for its belonging to the relevant level, type, group (subgroup), temperature class are prescribed by the international or national standards.

1.3.11 Electrical equipment and cables in explosion-hazardous areas shall also comply with the requirements of 2.11, Part X "Electrical Equipment" of the MODU/FOP Rules.

1 The requirements of Federal Law No. 123-FZ "Technical Regulations on Fire Safety Requirements" dated 22 July 2008 have been taken into consideration.
1.4 ARRANGEMENT OF MACHINERY AND ELECTRICAL EQUIPMENT IN WORKING SPACES

1.4.1 Structural measures shall be taken to protect process and accommodation rooms against potential exposure to explosion or fire. Accommodation and public spaces shall be arranged at the maximum distance away from the hazardous areas considering a prevailing wind direction. Provisions shall be also made for structural arrangements to protect working and accommodation spaces against a potential effect of explosions and fires.

1.4.2 The process rooms and spaces not specified in Table 1.2.4 which in particular cases may become explosion-hazardous, shall be divided into the corresponding explosion-hazardous zones according to 2.10 and 2.11, Part X "Electrical Equipment" of the MODU/FOP Rules.

1.4.3 Explosion-protected spaces of zone 1 for process purposes shall not communicate with the hazardous spaces. Where the passages are available, it shall be provided with tambur-gateway being air-pressurized by mechanical supply ventilation. Air for pressure system shall be extracted from the safe zone.

1.4.4 On FPU/MODU/FOP of 28 m high and over provided with lifts, the wells having no air-pressurized locks at their exit shall be provided with a system to pressurize the lift trunk in the event of an accident.

1.4.5 Hazardous spaces for process purposes shall have at least two exits, one of which shall lead directly to the open deck.

1.4.6 Escape routes for the FPU/MODU/FOP personnel to be used in the event of an accident shall lead from the hazardous areas to a temporary shelter, embarkation stations and a helicopter deck.

1.4.7 The spaces of main, emergency and back-up sources of electrical power shall be separated from the spaces in the hazardous areas by A-60 class fire bulkheads and divisions having fire-resistance of 1 h on the unexposed side.

1.4.8 Installation of diesel-generators/gas turbine generators in the spaces of the hazardous areas is prohibited.

1.4.9 The exterior A-60 class bulkheads of the accommodation module shall endure fire exposure within at least 1 h.

1.4.10 The exterior bulkheads of the accommodation module on the side of zones with oil and gas equipment shall have no scuttles and air inlets of ventilation and air-conditioning systems, and shall have a fire-resistant coating, and also shall be fitted with arrangements for producing water screens.

1.4.11 Switchboards shall comply with the requirements in 4.5, Part X "Electrical Equipment" of the MODU/FOP Rules.

1.4.12 Cables, wires and procedures for their laying andanchoring shall comply with the requirements in Section 16, Part X "Electrical Equipment" of the MODU/FOP Rules.

1.4.13 The lighting fixtures of emergency lighting, which are supplied from an independent source of electrical power, lengthwise of escape routes shall be provided with devices to check their operability in simulating the switching-off of the main source of electrical power. The life time of the independent source of electrical power shall be sufficient to supply emergency lighting on the escape routes during estimated time for the evacuation of people to a safe area.

1.4.14 The estimated time shall correspond to the time of supplying the lighting fixtures of emergency lighting, provided they are supplied from the emergency source of electrical power in compliance with the requirement in 9.3, Part X "Electrical Equipment" of the MODU/FOP Rules.

1.4.15 Radio stations, the control stations (panels) of fire-extinguishing units and fire alarm shall be located in the main machinery control room, and the stand-by means of control and communication, at the main control station and in a temporary shelter.

1.4.16 The enclosed spaces of the objects used for production, treatment, gathering and transportation of oil, gas and condensate shall be separated by A-60 class fire bulkheads from the spaces containing main, emergency and stand-by sources of electrical power and shall be provided with emergency ventilation with the output to the main machinery control room and main control station of the main process parameters and the indications of air composition at the items, and with the activation of an audible and visual alarm and the ESD system.
1.4.17 The rules for application of the electrical equipment depending on the degree of its explosion and fire hazard, and also the indicators of this hazard and procedures for their determination are established by the national and international standards.
1.5 LIGHTNING AND STATIC ELECTRICITY PROTECTION

1.5.1 Metal derrick, mast and other structures above FPU/MODU/FOP may be not fitted with a lightening conductor, if the design provides reliable electrical contact of the derrick and mast with the FPU/MODU/FOP metal structure or with the earthing point.

1.5.2 Connections between the air terminal, main conductor and earth terminal shall be welded or secured with bolts made of copper (copper alloys) or steel with corrosion protecting coating.

1.5.3 When receiving (transferring) fuel and free-flowing materials from a ship to FPU/MODU/FOP using the special electrically conductive hoses, a continuous electrical connection between the ship's pipelines and FPU/MODU/FOP shall be provided.

1.5.4 For protection against static electricity, metal fittings, tank, pipeline, air duct, dispensing device located inside and outside the FPU/MODU/FOP rooms shall be earthed. Non-conductive insulating couplings shall be shunted with electrically conductive jumpers and earthed.

1.5.5 Singly installed technical means (equipment, tank, apparatus, unit, reservoir) shall have individual earth terminals or be connected to the common earthing grid of FPU/MODU/FOP located near the equipment by means of a separate earthing wire.

1.5.6 Series connection of several earthing arrangements to the earthing bus (wire) is prohibited.
1.6 NEUTRALISING AND PROTECTIVE EARTHING

1.6.1 The power distribution system and electrical plant supply system may be used on FPU/MODU/FOP in accordance with Section 4, Part X "Electrical Equipment" of the MODU/FOP Rules.

1.6.2 In order to ensure safety, the metal parts of electrical installations, electrical equipment cases and the equipment driven therewith shall be earthed by connecting the earthing conductors with the earth terminal.

1.6.3 Metal parts of electrical equipment, metal cable armours (shells), metal structures for securing the conducting parts and other FPU/MODU/FOP structures under voltage but accessible for touching during operation shall be earthed, except for the following:
- electrical equipment powered by safe current;
- cases of specially insulated bearings;
- lamp bases, holders and fasteners of fluorescent lamps, lamp shades and reflectors;
- housings secured to lamp bases made of insulation material or screwed to this material;
- cable fasteners;
- single consumers up to 250 V fed from the isolating transformer.

1.6.4 Earthing conductors shall be connected to the earth terminal and structures by welding, and to the electrical equipment cases — by welding or bolting. Connection points of earthing conductors shall be accessible for inspection.

1.6.5 Technical condition of the earthing device shall be checked every year as follows:
- visual inspection of the visible part of the earthing device;
- check of the circuit between the earth terminal and earthing elements (for breaks or poor contact (if any) in the conductor connecting the apparatus with the earthing device) as well as quick-break fuses of transformers;
- measuring the earthing device resistance;
- check of the phase — zero circuit;
- ensuring that natural earth terminals are connected reliably.

1.6.6 Steel ropes and mooring lines shall not be used for earthing the case.

1.6.7 Portable earthing shall be preparatorily connected to the metal structure of FPU/MODU/FOP and then laid on the current-carrying parts and reliably secured to them by clamps, clips and other attachments.

1.6.8 The use of any conductors not intended for earthing as well as connection of earthing by their twisting are prohibited.
2 AUTOMATION

2.1 GENERAL

2.1.1 The requirements of this Section apply to the automated process control and monitoring systems of the oil-and-gas equipment and the ESD system.

2.1.2 The automated process control system and the ESD system may be combined into a common system.

2.1.3 The automated process control system is subject to the Register technical supervision irrespective of the automation mark in the FPU/MODU/FOP class notation (refer to 2.4, Part I "Classification" of the MODU/FOP Rules and 2.2, Part I "Classification" of the FPU Rules).

2.1.4 Items of the Register technical supervision in the automated process control system and the ESD system are given in the Nomenclature in Section 7, Part I "General Regulations for Technical Supervision".
2.2 SCOPE OF TECHNICAL SUPERVISION

2.2.1 General provisions relating to the procedure of technical supervision of the automated process control system and the ESD system, as well as the requirements for the amount of technical documentation submitted to the Register for review and approval shall comply with the requirements of Sections 3 — 10, Part I "General Regulations for Technical Supervision".

2.2.2 The execution of monitoring and control functions with regard to the systems providing production of hydrocarbons, treatment, gathering and transportation of well fluids shall be provided by the automated process control system.

2.2.3 Design of the automated process control system carried out at the stage of the FPU/MODU/FOP designing shall include various options of the number of disconnection levels depending on the system design, set of the equipment to be installed and the process details of well fluid production on FPU/MODU/FOP.

2.2.4 The ESD system provides emergency shutdown on its own or emergency shutdown via the automated process control system of the process system and the drilling rig (refer to 9.2, Part XI "Electrical Equipment" of the FPU Rules).

2.2.5 The requirements for the monitoring and control system of an electrical power plant are given in Parts VII "Machinery Installations and Machinery", X "Electrical Equipment" and XIV "Automation" of the MODU/FOP Rules. The requirements for fire protection and fire and hazardous gases detection systems are set forth in Parts VI "Fire Protection" and X "Electrical Equipment" of the MODU/FOP Rules.
2.3 AUTOMATED MONITORING, CONTROL AND EMERGENCY PROTECTION SYSTEM

2.3.1 Depending on the FPU/MODU/FOP purpose, the automated process control system shall execute the functions of the following systems:

.1 process control system to monitor and control the process system;
.2 ESD system providing: shutdown of fuel oil and lubricating oil pumps, of the equipment, which uses air for burning/compression, of a drilling rig/process system, power-off of the electrical equipment of the drilling rig/process system with the expansion of hazardous areas (refer to 2.2.3 and 2.2.4);
.3 where necessary maintenance system providing: submission of information on the condition of production systems to the management, production process reports for transmitting ashore, for communication with shore-based services via a satellite station. The maintenance system is designed only for the engineering data mining from the automated process control system; any control via maintenance system shall be prohibited.

2.3.2 Information and control connections of the automated process control system shall be based on microprocessor technology and shall be carried out via a high-performance reserved data network using a standard noise immune interface.

2.3.3 In order to alert the FPU/MODU/FOP personnel, the following alarm systems shall be provided with the following:

general evacuation alarm;
blowout/fire/hydrogen sulphide/hydrocarbons alarm;
warning alarm of the chemical smothering and gas extinguishing system operation;
automatic warning alarm of the release of fire-extinguishing medium.

2.3.4 Alarm facilities shall provide electromagnetic and information compatibility with each other and also with other facilities interacting with them.

2.3.5 The communication lines between alarm/fire alarm facilities shall be designed considering their functioning in fire within the time period required for detecting the fire, giving an alarm on evacuation, the time needed for people evacuation, as well as the time required to control other facilities.

2.3.6 Alarm facilities shall be resistant to electromagnetic interference with the maximum allowable values of interference level typical for the object to be protected. At that these facilities shall be electromagnetic interference-free with regard to other facilities installed on the object being protected.

2.3.7 Alarm facilities shall provide electrical safety.

2.3.8 The automated process control system shall include UPS intended for the most essential apparatus of the system during and after power-off of the main and emergency electrical power plants (refer to 2.4.2).

2.3.9 The automated process control system shall provide protection:
protection against unauthorized access;
protection against wrong actions of the personnel;
protection against damages to information and programs;
automatic and routine monitoring of apparatus and device serviceability with the information output to the operator panel in the main machinery control room.

2.3.10 Operability of alarm devices and gas detection devices shall be checked at least once in a month.

2.3.11 Calibration and verification of instrumentation, automation devices and also interlocking and alarm systems shall be carried out according to the schedules developed by the company's metrological service, approved by the company's technical manager and agreed with a territorial supervisory body.

2.3.12 The following instrumentation shall not be installed and used:
without a brand or with an overdue brand;
without certificates;
with expired life time;
damaged, and requiring repairs and special verification.
2.3.13 All the instrumentation and switchboards shall be antistatically earthed irrespective of the voltage applied.

2.3.14 Technical means of the man-machine interface and monitoring forming the ESD system shall have redundancy.
2.4 INSTRUMENTATION AND AUTOMATION DEVICES

2.4.1 Equipment, instrumentation and automated control systems, lighting, alarm and communication facilities for use in hazardous areas shall have an explosion-proof enclosure and the protection level, corresponding to the hazardous area, and the type of explosion protection, corresponding to the categories and groups of explosive mixtures (refer also to 1.3).

2.4.2 Provision shall be made for an UPS, as an emergency transitional source of power, to supply the monitoring and control devices of blowout equipment to ensure control in emergency de-energization. The UPS operational time shall correspond to that of the automated process control system but not less than 30 min (refer also to 9.3, Part XI "Electrical Equipment" of the Rules for the Classification and Construction of Sea-Going Ships).

2.4.3 The fixed gas analyzers of the gas detection system shall be of a dual-limit type activated when the hydrocarbon concentration in the air reaches 10% and 20% of LFL for those installed on air intake ducts, 20 and 50% of LFL — for those installed in rooms and spaces — shall provide the signal shaping for the automated process control system.

2.4.4 In order to ensure the above mentioned functions, the sensors shall generate high-validity signals confirmed by minimum two sensors.

2.4.5 The measurement limit of a working pressure shall be within the second third of the scale of a pressure gauge. The dial of the latter shall be marked with a red line or fitted with a red plate on the glass of the pressure gauge after a scale division corresponding to the allowed working pressure. The pressure gauge fitted 2—5 m above the platform, from which it may be seen, shall be at least 160 mm in diameter.

2.4.6 The requirements for fire, hazardous and toxic gas detection systems are given in Section 4, Part VI "Fire Protection" and in 7.9, Part X "Electrical Equipment" of the MODU/FOP Rules.

2.4.7 Instrumentation located in the main machinery control room and at the main control station shall have inscriptions indicating the parameters to be determined.
2.5 AUTOMATED SYSTEM FOR EMERGENCY PROTECTION

2.5.1 The ESD system of the automated process control system is designed for shutdown of the equipment installed for well drilling processes, treatment and transportation of well fluids, discharge to the flare, and also for pressure relief and draining through the specially provided systems to prevent hazard for the entire platform.

2.5.2 The following conditions shall be observed during operation of FPU/MODU/FOP:
- flowing wells shall be provided with automatic downhole and wellhead surface controlled subsurface safety valves (SCSSV) and also with well components fitted with remote-controlled gate valves;
- gas-lift wells shall be provided with wellhead and line SCSSV;
- discharges from safety valves on the process equipment as well as from communication lines shall be directed to the tank (mist extractor) and gas — to the flare;
- communication lines and wells shall be purged, unloaded and pumped through the purging unit followed by pumping of liquid by pumps. The purging gas shall be directed to the gas outlet.

2.5.3 The downhole SCSSV control station and remote control device of the well component gate valves shall be installed in a separate room outside the explosion-hazardous area (remote control device) mainly in the main machinery control room.

2.5.4 Production tubing and annulus space pressure in running wells shall be continuously monitored.

2.5.5 Purging and unloading of wells, pipelines, separators, etc. shall be carried out through purging and unloading units.

2.5.6 The ESD system of the automated process control system shall be so designed in such a way that it may be checked with no effect on the functioning of other systems. Provision shall be made for a possibility to periodically check the automated process control system activation by simulating the initiation of the situations specified in 2.6 and 2.7.

2.5.7 Measures shall be taken to provide electromagnetic compatibility of automated process control system equipment (refer to 2.2, Part X "Electrical Equipment" of the MODU/FOP Rules).

2.5.8 Provisions shall be made for manual start of the ESD system of the automated process control system from the following locations: the main machinery control room, main control station, area of wellhead SCSSV, temporary shelter, helicopter platform and the personnel embarkation stations.

2.5.9 The requirements in Section 9, Part X "Electrical Equipment" of the MODU/FOP Rules, 9.2.4, Part XI "Electrical Equipment" of the FPU Rules, as well as Part XIV "Automation" of the MODU/FOP Rules shall be taken into account, to the extent as applicable.
2.6 PARTIAL SHUTDOWNs OF PROCESSES

2.6.1 In the event of emergency situation associated with any well or equipment unit, provision shall be made for an opportunity to partially shut down a process or a well.

2.6.2 The ESD system of the automated process control system shall provide the following sequence of operations:
- closing of wellhead valves and gate valves (including those at the assembly of underwater blowout equipment) associated with the given process;
- total shutdown of the assembly of the process of hydrocarbon raw production and treatment, and of the associated equipment and systems.

2.6.3 The number of emergency shutdown levels and the sequence of shutdown operations are designed for each ESD system project of the specific automated process control system for FPU/MODU/FOP (refer also to Section 2, Part III "Systems for Production, Treatment, Gathering and Transportation of Well Fluids").

2.6.4 Procedure for closing (opening) of shut-off valves, switching-on/switching-off of the equipment, list of potential failures with regard to the processes and troubleshooting, list of parameter values, at which the processes are partially or totally shutdown shall be determined in the course of the risk identification (refer to 2.4, Part X "Safety Assessment") and described in the appropriate sections of a technological routine, operational manuals for the FPU/MODU/FOP equipment.

2.6.5 In the event of the ESD system failure, the automated process control system shall provide manual intervention of the operator and a possibility to continue operation in a manual mode.

2.6.6 When the concentration of hydrocarbons in air of hazardous areas reaches 20 % of LFL, the alarm (visible and audible) shall be activated and emergency exhaust ventilation shall be started.

2.6.7 When the concentration of hydrocarbons rises up to 50 % of LFL and above, in case of a power supply failure, fire in areas (rooms) accommodating the process facility, a high/low pressure in the pipeline for delivery of a well fluid, all the processes in systems of oil and gas gathering and treatment shall be shutdown.

2.6.8 The emergency shutdown procedure for the processes of drilling, production and treatment of hydrocarbons at any block or module shall not result in an emergency situation at other FPU/MODU/FOP blocks and modules.

2.6.9 Gas compressor plants and rooms for their arrangement shall be equipped with stationary gas detectors and ESD systems with operating thresholds of 10 and 20 % of LFL in accordance with 2.9.10, Part III "Systems for Production, Treatment, Gathering and Transportation of Well Fluids".
2.7 TOTAL SHUTDOWN OF PROCESS EQUIPMENT AND ALL PRODUCTION PROCESSES

2.7.1 In the event of emergency situations like:
- an uncontrolled blowout;
- depressurization of systems containing hydrocarbons resulting in expansion of hazardous areas (refer to Table 1.2.4);
- the fire alarm system of the ESD system of the automated process control system shall be activated and the total shutdown of all drilling and process equipment and all production processes shall be provided automatically or by the operator command in a manual mode using emergency stop buttons in the main machinery control room or other control stations (refer to 2.5.7).

In all other respects, the ESD system shall comply with the requirements in 9.6, Part X "Electrical Equipment" of the MODU/FOP Rules.

2.7.2 Depending on the potential consequences of an emergency situation, the ESD system of the automated process control system shall provide the following (refer also to Section 2, Part III "Systems for Production, Treatment, Gathering and Transportation of Well Fluids"):
- shutdown of the single units and systems of an installation with and without the well fluid emptying;
- total shutdown of a process of raw production and treatment, inhibitor injection system, reconditioning installation and other systems with and without the well fluid emptying;
- total shutdown of all the platform process equipment (except the emergency life support systems), closing of gate valves (valves) at the wellheads and pipelines connecting FPU/MODU/FOP to other objects of field construction or support vessels, pressure releasing and emptying of process equipment and pipelines by means of the systems provided.

2.7.3 The sequence of machinery and equipment shutdown specified in 2.7.1 and 2.7.2, may be changed, depending on the specific emergency situations. The sequence of shutdowns shall be included in a special instruction on actions in emergency situations.
2.8 RECOMMENDED SEQUENCE OF SHUTDOWNS

2.8.1 The shutdown sequence is given in Table 2.8.1, depending on the shutdown level.

<table>
<thead>
<tr>
<th>Shutdown levels</th>
<th>Systems to be switched off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Shutdown of a separate system of the process or separate part of equipment. Emergency shutdown of one system resulting in shutdown of another system but not resulting in stoppage of the oil extraction. Level 1 shutdown is activated automatically or ordered by the operator via the emergency shutdown system (ESD); this level may be activated via the local control network of the equipment or subsystem of the automated process control system. Other equipment continues to operate in normal operation mode.</td>
</tr>
<tr>
<td>Level 2A</td>
<td>Complete shutdown of the process without depressurizing the equipment and pipelines; closing of side well component gate valves as well as SCSSVs on the oil and gas export pipelines, the pressurized equipment and piping system remaining in ready to quick repeated start condition. Sublevel 2A shutdown shall be activated automatically or by order of the operator via the ESD system.</td>
</tr>
<tr>
<td>Level 2B</td>
<td>Complete shutdown of the process accompanied by depressurizing and purging of equipment and pipelines, closing of side well component gate valves as well as oil and gas SCSSV valves. Sublevel 2B shutdown shall be activated automatically or by order of the operator via the ESD system.</td>
</tr>
<tr>
<td>Level 3</td>
<td>Complete shutdown of the process accompanied by depressurizing and purging of equipment and pipelines, closing of side and head well component gate valves as well as SCSSVs on the oil and gas export pipelines. Shutdown of main gas turbine generators/diesel generators is performed simultaneously. Sublevel 3 shutdown shall be activated automatically or by order of the operator via the ESD system.</td>
</tr>
<tr>
<td>Level 4</td>
<td>Complete shutdown of the process accompanied by depressurizing and purging of equipment and pipelines, closing of side and head gate valves and well component SCSSVs as well as SCSSVs on the oil and gas export pipelines. Shutdown of main gas turbine generators/diesel generators, auxiliary and emergency diesel generators is performed simultaneously. Sublevel 4 shutdown shall be activated automatically or by order of the operator via the ESD system.</td>
</tr>
</tbody>
</table>

2.8.2 The ESD system of the process system shall be considered with due regard to emergency cases on any offshore facility.

2.8.3 The provision shall be made for generation of a signal for activating the ESD system in the automatic mode:

- by the sensor signals of the gas detection and alarm system;
- in case of fire alarm activation;
- in case of main power supply failure;
- in case of failure of process systems affecting the environment safety and pollution.
2.9 CONTROL STATIONS

2.9.1 To control the FPU/MODU/FOP facilities the following control stations shall be provided: the main machinery control room and consolidated operator room of the drilling rig/process system; production station operator room (may be consolidated with the main control station); the main control station; reserve control station (may be consolidated with the main control station).

2.9.2 In addition, the following control stations shall be provided on FPU/MODU/FOP: driller's control cabin; drilling foreman's office; geo-technological monitoring station; helicopter control center; fire-extinguishing stations; local control stations.

2.9.3 The control and monitoring of the FPU/MODU/FOP facilities under normal operational conditions shall be carried out from the main machinery control room. In emergency situations associated with heavy fire and uncontrollable blowouts of hazardous gases resulting in the expansion of hazardous areas, provision shall be made for duplicating control and monitoring from the main control station enclosed within a temporary shelter. All control stations shall be provided with necessary communication means, warning and alarm facilities.
2.10 MAIN MACHINERY CONTROL ROOM

2.10.1 The main machinery control room is intended to provide reliable and failure-free operation of technical facilities of process system.

2.10.2 To be provided from the main machinery control room are:

.1 centralized monitoring and remote automated control of the following:
 electrical power plant and support systems,
 main, emergency and back-up sources of electrical power,
 personnel life support systems,
 main and auxiliary equipment of the drilling rig and process system,
 systems associated with the drilling rig and process system operation;

.2 air monitoring in spaces;

.3 control of fire-fighting means;

.4 emergency shutdown of the drilling rig and process system;

.5 emergency shutdown of ventilation, fuel oil and lubricating oil pumps, equipment, which uses compressed air for burning/compression;

.6 monitoring of non-explosion-proof equipment in the event of fire, oil and gas shows, and expansion of hazardous areas;

.7 execution of arrangements on ecological monitoring;

.8 radio communications, video surveillance within the areas of arrangement of the production system facilities;

.9 preparation of reports and summaries on process progress and material consumption for administrative purposes.
2.11 MAIN CONTROL STATION

2.11.1 The main control station is intended for general management of production processes, personnel safety and environment protection.

2.11.2 Where necessary, the main control station, in terms of its objectives and tasks, shall function as the main machinery control room.

2.11.3 To be also provided from the main control station are:
- monitoring of a navigational situation;
- monitoring of hydrometeorological conditions;
- control of navigational light and sound signal means;
- radio communications with the shore and ships;
- management of production and process systems, as well as ecological monitoring;
- submission of information on the current technical condition of structures and equipment related to the FPU/MODU/FOP systems.
2.12 DRILLER'S CONTROL CABIN

2.12.1 The driller's control cabin is intended for direct control of a well drilling process and shall be arranged on the drilling floor in the explosion-hazardous zone 2 and fitted with mechanical supply ventilation creating the excessive air pressure in the room.

2.12.2 To be ensured from the driller's cabin are:
- monitoring and control of drilling equipment;
- monitoring of parameters of hole drilling processes;
- monitoring of hazardous gas blowouts and initiation of ignition sources in the drilling rig spaces;
- monitoring and control of blowout equipment;
- video surveillance of the condition of rotating and cargo-handling equipment, mechanisms for setting the drill pipe stands;
- emergency shutdown of drilling equipment at the expansion of hazardous areas.
2.13 DRILLING FOREMAN'S OFFICE

2.13.1 The drilling foreman's office is intended for management of a well drilling process and shall be located outside the hazardous areas.

2.13.2 The following processes shall be provided from the drilling foreman cabin:
- technical management of well drilling;
- parameter monitoring of well drilling and cementing processes;
- parameter monitoring of auxiliary systems of the drilling rig;
- parameter monitoring of equipment and systems providing the drilling rig operationing;
- monitoring of explosion-hazardous gas blowouts, fire source shows, the condition of explosion and fire protection means in the drilling rig locations and spaces;
- alerting the main machinery control room on emergency situations and measures for their elimination, management of works on eliminating oil-gas-water shows at the well and emergency well killing;
- video surveillance of the areas of the drilling equipment arrangement;
- preparation of summaries on the well drilling progress, tool and material consumption;
- provisions for emergency well killing.
2.14 GEO-TECHNOLOGICAL MONITORING STATION

2.14.1 The geo-technological monitoring station shall be used for execution of the following functions:
- monitoring of the drilling process parameters;
- computation and automated monitoring of the process parameter derivatives;
- laboratory research of the core and drilling mud samples;
- automated and laboratory monitoring of gases;
- well cementing and hydraulic calculations;
- geological definitions for the well;
- research on the well productivity, development of recommendations on the optimization of hole drilling processes;
- early prediction of oil-gas-water shows and development of recommendations on the accident prevention.
2.15 LOCAL CONTROL STATIONS

2.15.1 Local control stations are intended to control production system facilities at their locations.

2.15.2 Local control stations shall be provided with all the instrumentation and automated control systems, communication means and alarms as required.

2.15.3 List of parameters from the local control stations displayed in the main machinery control room and main control station, shall comply with the requirements of design documentation.
2.16 MONITORING AND CONTROL OF EXPLOSION AND FIRE PROTECTION FACILITIES

2.16.1 When the concentration of hazardous gases reaches 20 % of LFL in the corresponding explosion-hazardous rooms and spaces and 10 % of LFL at air intakes in non-hazardous rooms of FPU/MODU/FOP, the automated process control system shall provide:

- activation of visible and audible alarms in the main machinery control room, at the main control station, in the driller's cabin, drilling foreman's office (for drilling rig rooms) and also at the relevant local control stations (for rooms only);
- indication in the main machinery control room, at the main control station of the hazardous gas concentration;
- automatic start of the back-up fans of a process ventilation system in the relevant spaces of zones 1 and 2 and emergency exhaust ventilation.

2.16.2 When the concentration of hazardous gases reaches 50 % of LFL in the corresponding explosion-hazardous rooms and spaces and 20 % of LFL at air intakes in non-hazardous rooms of FPU/MODU/FOP, the automated process control system shall provide:

- shutdown of the equipment consuming air for burning/compression;
- shutdown of welding equipment;
- shutdown of drilling equipment;
- emergency shutdown of the process system;
- shutdown of non-explosion-proof electrical equipment in open spaces and within the spaces outside the boundaries of a temporary shelter;
- emergency shutdown of ventilation, including the emergency exhaust ventilation;
- activation of alarm in the main machinery control room and at the main control station indicating the open doors around the temporary shelter boundaries when hazardous gases are detected in the open spaces and air inlets;
- when the signals on detection of hazardous gases are not accepted (acknowledged) by a watch officer within 120 s, provision shall be made for a signal to actuate the automatic start of a public address system and general alarm system.

2.16.3 To execute the above functions, detectors shall give high reliability signals acknowledged by at least two sections.

2.16.4 At any location of the object being protected, where people shall be warned of an accident, the loudness level generated by the audible and vocal announciators shall be higher than the permissible noise level. The vocal announciators shall be located in such a way that at any point of the object being protected, where people shall be warned of an accident, the intelligibility of the voice information transmitted is provided.

2.16.5 Light announciators shall provide the contrasting perception of information within the range representative for the object being protected.

2.16.6 Where FPU/MODU/FOP is subdivided into alerting zones to warn the personnel of an accident, the special order of priority in warning the people in various spaces of FPU/MODU/FOP shall be established.

2.16.7 An alerting system to warn people of an accident and a people evacuation control system shall function during the time needed for the personnel evacuation.

2.16.8 The sound signals of the alerting system to warn people of an accident shall have a tonality different from other signals.

2.16.9 Audible and vocal announciators shall have no releasable connections, possibility of volume control and shall be connected to the electric mains and also to other communication facilities. The communications of the systems used for warning people of an accident and for control of the people evacuation may be combined with the FPU/MODU/FOP broadcasting network.

2.16.10 The alerting system and people evacuation control system shall be continuously powered by UPS.
2.16.11 The information transmitted by the alerting system and the people evacuation control system shall comply with the information in the developed plans for people evacuation, which shall be placed on each deck of FPU/MODU/FOP.
2.17 EMERGENCY SHUTDOWN OF VENTILATION

2.17.1 The emergency shutdown of ventilation is carried out by its sections:

shutdown of an adjacent ventilation section shall not result in the forced stop of the equipment located in the spaces covered by other sections;
shutdown of an adjacent ventilation section shall not result in the escape of hazardous gases outside the boundaries of process spaces within a dangerous area and in the penetration of these gases into safe spaces.

2.17.2 The emergency shutdown of ventilation and closing of fire ventilation gate valves shall be controlled:

remotely: from the main machinery control room and the main control station;
remotely: at escape routes from the spaces of the relevant ventilation section;
automatically: at activation of the fire smothering gas system, detection of hazardous gases and vapours with a concentration of 20 % of LFL at the air intakes of explosion-proof spaces.
2.18 EMERGENCY SHUTDOWN OF FUEL OIL AND LUBRICATING OIL PUMPS

2.18.1 Emergency shutdown of the fuel oil and lubricating oil pumps, pumps for transfer of inflammable and combustible liquids shall be controlled:
 - remotely: from the main machinery control room and the main control station;
 - remotely: at the escape routes;
 - automatically: in the event of fire on FPU/MODU/FOP.
2.19 EMERGENCY SHUTDOWN OF WELDING EQUIPMENT

2.19.1 Emergency shutdown of the welding equipment shall be controlled:
remotely: from the main machinery control room and the main control station;
automatically: at activation of the fire smothering gas system, detection of hazardous gases with a
concentration of 50 % of LFL in explosion-hazardous spaces and 20 % of LFL at the air intakes to
explosion-hazardous spaces.
2.20 AUTOMATION SYSTEMS OF DRILLING RIG AND PROCESS SYSTEM

2.20.1 Automation of monitoring, control and safety systems of the drilling rig and process system shall also comply with the requirements in 9.6, Part X "Electrical Equipment" and also Part XIV "Automation" of the MODU/FOP Rules, to the extent as applicable.

2.20.2 The manifold monitoring and control system shall provide:
- alarm to the main machinery control room on the position (open/closed) of the pneumatically controlled valves distributing well fluids from the well to the manifolds;
- remote control from the main machinery control room of opening and closing of the valves distributing the well fluids from the well to the high- and low-pressure manifolds.

2.20.3 The monitoring and control system of the well fluid measuring unit shall provide in the main machinery control room the indication of the following:
- multi-phase flow pressure;
- multi-phase flow temperature;
- multi-phase flow discharge (content of oil, water and gas) for each well and its recording.

2.20.4 The separator monitoring and control system shall provide:
- automatic regulation of a gas pressure and a liquid level in the separator;
- indication in the main machinery control room of a gas and oil flow at the separator outlet;
- alarm in the main machinery control room indicating the position of oil supply valves (open/closed) at the separator inlet and outlet, and the valves for gas discharge from the separator to the flare, on a high and low gas pressure and oil level in the separator, the extremely high and low gas pressure and the oil level in the separator;
- emergency control of closing of the valves installed on the pipelines supplying the well fluids to the separator, diverter valves for oil and water delivery from the separator, opening of the valve for gas discharge from the separator to the flare.

2.20.5 The crude oil heater monitoring and control system shall provide the automatic regulation of the crude oil temperature at the heater outlet.

2.20.6 The monitoring and control system of the gas compressor coolers shall provide:
- automatic regulation of gas temperature at the cooler outlet;
- indication in the main machinery control room of gas temperature at the cooler inlet and outlet.

2.20.7 The booster pump monitoring and control system shall provide:
- remote control of the pump start and shutdown from the main machinery control room;
- automatic flow regulation;
- alarm in the main machinery control room indicating the pump overloads and malfunctions;
- emergency shutdown of the pumps.

2.20.8 The dehydrator monitoring and control system shall provide:
- remote control of the dehydrator start and shutdown from the main machinery control room;
- automatic regulation of the oil flow at the dehydrator inlet and of the oil level in the dehydrator;
- indication in the main machinery control room of the oil level in the dehydrator and a pressure differential at the inlet valve;
- alarm in the main machinery control room indicating the high/low oil level and extremely high/low oil level in the dehydrator, and on its malfunctions;
- emergency shutdown of the dehydrator, closing of the crude oil supply and diverter valves and water diverter valves.

2.20.9 The crude oil desalter monitoring and control system shall provide:
- remote control of the desalter start and shutdown from the main machinery control room;
- automatic regulation of the oil flow at the desalter inlet and of the oil level in the desalter;
- indication in the main machinery control room of the oil level in the desalter and a pressure differential at its inlet valve;
alarm in the main machinery control room indicating the high/low oil level and extremely high/low oil level in the desalter, and on its malfunctions;
emergency shutdown of the desalter, closing of the crude oil and flushing water supply and diverter valves.

2.20.10 The monitoring and control system of oil offloading pumps shall provide:
remote control of the pump start and shutdown from the main machinery control room;
automatic flow regulation at the 4th stage separator and measuring unit;
alarm in the main machinery control room indicating the high/low values of oil supply at the pump suction, pump overload and malfunctions;
emergency shutdown of the pumps.

2.20.11 The monitoring and control system of the measuring unit at offloading pipeline shall provide:
remote control from the main machinery control room of opening and closing of the valves on the main and back-up measuring lines;
indication in the main machinery control room of the crude oil flow, temperature, pressure and watering;
recording in the main machinery control room of the crude oil (gas) flow;
alarm in the main machinery control room indicating the high watering of crude oil (gas humidity).

2.20.12 The monitoring and control system of the pig launcher/receiver at an offloading pipeline shall provide:
remote control from the main machinery control room of opening and closing of the valves on the lines of oil suction and delivery to the pipeline;
indication in the main machinery control room of the pressure in the pig launcher/receiver and in the bypass line;
alarm in the main machinery control room indicating the closed/open position of the valves on the lines of oil suction and delivery to the pipeline/cover of the pig launcher/receiver, high pressure in the pig launcher/receiver, high/low pressure in the bypass line, the extremely high and low pressure in the bypass line of the gas measuring unit at offloading pipeline.
2.21 AUTOMATIC FIRE EXTINGUISHING INSTALLATIONS

2.21.1 Automatic water-based and foam fire extinguishing installations.
Automatic water-based and foam extinguishing installations shall provide:
.1 timely detection of fire and start of the automatic fire extinguishing installation;
.2 water supply from the sprinklers of automatic water-based fire extinguishing installations with a water supply rate as required;
.3 foam supply from the foam generators of automatic foam fire extinguishing installations with a foam expansion ratio and supply rate as required.

2.21.2 Automatic gas fire extinguishing installations.
Automatic gas fire extinguishing installations shall provide:
.1 timely detection of fire with an automatic alarm system being part of the automatic gas fire extinguishing installation;
.2 a possibility to delay the supply of a fire extinguishing medium within the time period needed for evacuating people from a protected space;
.3 making of the fire extinguishing concentration of a fire extinguishing gas in the protected space or above the surface of a burning material within the time needed for fire extinguishing.

2.21.3 Automatic dry powder extinguishing installations.
Automatic dry powder extinguishing installations shall provide:
.1 timely detection of fire with an automatic alarm system being part of the automatic dry powder extinguishing installation;
.2 powder supply from the sprayers of automatic dry powder extinguishing installations with a powder supply rate as required.

2.21.4 Automatic aerosol extinguishing installations.
Automatic aerosol extinguishing installations shall provide:
.1 timely detection of fire with an automatic alarm system being part of the automatic aerosol extinguishing installation;
.2 a possibility to delay the supply of a fire extinguishing aerosol within the time period needed for evacuating people from a protected space;
.3 making of the fire extinguishing concentration of a fire extinguishing aerosol in the protected space within the time needed for fire extinguishing;
.4 prevention of any opportunity for people and combustible materials to contact the high-temperature parts of the generator surface and the jet of a fire extinguishing aerosol.

2.21.5 Automatic combined fire extinguishing installations.
Automatic combined fire extinguishing installations shall comply with the requirements imposed on the automatic fire extinguishing installations they consist of.

2.21.6 Robotic fire extinguishing installations.
Robotic fire extinguishing installations shall provide:
.1 detection and elimination or limitation of the fire spread beyond a seat of fire without the presence of personnel within the operational area of the installation;
.2 a possibility to remotely control the installation and to transmit information from the location where the installation is used;
.3 a possibility of the installation to execute its functions when exposed to the hazardous factors like a fire or an explosion, radiant, chemical or other hazardous effects on people and the environment.

1 The requirements of Federal Law No. 123-FZ "Technical Regulations on Fire Safety Requirements" dated 22 July 2008 have been taken into consideration.
2.21.7 Automatic installations for fire inhibition.
Automatic installations for fire inhibition shall provide reduction of fire expansion rate and initiation of associated hazardous factors in the following cases:
.1 automatic installations for fire inhibition shall be used in the spaces where the application of other automatic fire extinguishing installations is unreasonable or impracticable;
.2 type of a fire extinguishing medium used in the automatic installations for fire inhibition is defined by the features of the object to be protected and by the type and location of fire.

2.21.8 The technical requirements for structural fire protection and the equipment of the FPU/MODU/FOP fire protection systems are given in Part VI "Fire Protection" of the MODU/FOP Rules.
PART X. SAFETY ASSESSMENT

1 TERMS AND DEFINITIONS

1.1 DEFINITIONS

1.1.1 The present has been developed on the basis of the guidance materials of IMO and Russian supervisory bodies (Rostekhnadzor). For the purpose of the present Part the following terms and definitions not given in 1.1, Part I "General Regulations for Technical Supervision" are used.

Accident means a failure of structures and/or technical devices installed on a hazardous production object (FPU/MODU/FOP), uncontrolled explosion and/or a blowout of hazardous substances.

Accident hazard means a threat, potential damage to the people, property and/or the environment due to an accident on FPU/MODU/FOP. Accident hazards are associated with a potential failure of structures and/or technical devices, an explosion and/or a blowout of hazardous substances with a resultant damage.

Accident risk means measure of danger featuring the probability of potential accident on FPU/MODU/FOP and the severity of the accident consequences. The key indices of the accident risk are the following.

Hazard identification means a process of identifying and recognizing the accident hazards on the FPU/MODU/FOP, as well as definition of hazard characteristics.

Hazardous substances mean flammable, oxidizing, combustible, explosive, toxic substances and those posing hazard to the environment.

Risk assessment means a process used for determination of probability (or frequency) and severity of consequences for health, property and/or the environment after the accident. The process includes estimation of probability (or frequency) and assessment of consequences and their combinations.

Risk analysis means a process of hazards identification and the FPU/MODU/FOP accident risk assessment with regard to individuals or groups of persons, property or environment.

1.1.2 The main quantitative indices of incident risk analysis are:

Technical risk means the probability of a technical device failure with certain level (class) consequences for a certain period of the FPU/MODU/FOP operation; technical risk indices are determined by the relevant methods of the reliability theory and mathematical simulation;

Individual risk means a frequency of individual injury as a result of the factors of danger under consideration;

Potential territorial risk means a frequency of the materialization of hazardous effects at the certain point of a territory;

Potential loss of life means an expected number of people injured as a result of potential accidents during a certain period of time;

Societal risk or FN curve means a relation between the frequency of events F where at the specified degree not less than number of people N has been injured. It defines severity of the potential accident consequences;

Expected damage means the mathematical expectation of a damage value due to a potential accident during a certain period of time.

1.1.3 Industrial safety requirements mean the conditions, bans, restrictions and other mandatory requirements in the federal laws and other normative legal acts of the Russian Federation, as well as in the normative and technical documents, which are adopted in accordance with the established procedure and which observance provides industrial safety.

1.1.4 The abbreviations for the MODU/FOP/FPU used in international practice are given in Appendix 1.
2 RISK ANALYSIS

2.1 GENERAL

2.1.1 The general guidance part of a system of the FPU/MODU/FOP safety measures is the procedures for identification and valuation of risk of origination and progress of the accident situations. Identification of hazards shall be based on the development of a concept of accident scenarios analysis and on the substantiation of procedures for assessment of the accident situations. The risk valuation is based on the development of the criteria of the sufficient equipment safety, which depends on the qualitative and quantitative assessments of risks and on risk management. The requirements for identification and valuation of risks for FPU/MODU/FOP provided with the equipment for drilling, production, treatment, gathering, storage and transportation of hydrocarbons shall comply with the recognized guidance materials of an authorized supervisory body (Russian Federal Service for Environmental, Technological and Nuclear Supervision (Rostekhnadzor), EMERCOM State Fire Control Service), and also with the requirements of Part XV "MODU and FOP Safety Assessment" of the MODU/FOP Rules.

2.1.2 While developing the design documentation calculations on risk assessment are the integral part of a declaration on industrial safety at the objects, for which it shall be developed in compliance with the RF legislation.

2.1.3 The accident situation analysis is divided into two main trends.

The first trend is associated with the analysis of accident situations for compliance with existing standards.

The second trend is associated with the analysis of accident situations for poorly studied scenarios of a higher hazard.

2.1.4 The analysis of accident situations is resulted in the development of the arrangements aimed at minimization of a probability and severity of the accident consequences for FPU/MODU/FOP.
2.2 RISK ANALYSIS OF ACCIDENT SITUATIONS

2.2.1 Basic principles.

2.2.1.1 The analysis of accident situations shall be performed to identify, assess and manage potential accident situations.

Other areas associated with this system are labour protection, personnel training and organizational arrangements in connection with the accident.

Risk analysis of accident situations is carried out at all pre-project operations, substantiation of investments, at pre-project stage, at design stage (at all design stages starting with a design concept), at commissioning and decommissioning, in service, at re-equipment, conservation and utilization of FPU/MODU/FOP. In this case all the design operational modes shall be considered, i.e. normal operational and extraordinary modes, emergency and extreme scenarios.

2.2.1.2 The purpose of risk analysis at the stage of investments and pre-project works performance or at the design stage of FPU/MODU/FOP (drilling rig and process system), systems for production, gathering, treatment and transportation of well fluids, is the following:

identification of hazards and the prior quantitative and qualitative risk assessment, considering hazard exposure on the personnel, material assets, population, property and the natural environment;

taking into account the results during analysis of acceptability of the decisions proposed and selection of the optimum alternatives of arrangement of the facilities and equipment, including arrangement of other objects and cost efficiency;

information support for development of a process schedule, plan of the project quality control, a plan of incident prevention, instructions and plans on elimination (localization) of spills and accident situations;

assessment of alternative proposals.

2.2.1.3 Analysis of potential accident situations shall be reviewed and approved by the Register and shall include:

initial data for analysis, starting with the description of conditions at initiation of the accident situation;

particulars of analysis techniques;

simulation (physical, analytical and statistical);

physical, analytical and statistical models;

description of the scenario of the accident progress, including performance of the required calculations;

output data, including description of arrangements on the accident prevention with indication of the equipment and systems to be used for prevention of accidents and neutralization of the accident consequences;

measures on protection of the personnel and persons being on FPU/MODU/FOP at the accident.
2.3 CRITERIA OF PROBABILITY APPROACH TO SAFETY

2.3.1 The most widespread potential accident situations are the following: blowout; spill/release; leakage; structural damage; capsize; foundering; explosions; fires; collisions, etc.

The criteria of sufficient safety or risk acceptability during analysis of potential accident situations are determined by the matrix "probability-severity of consequences" (refer to Table 2.3.1-1).

Table 2.3.1-1

<table>
<thead>
<tr>
<th>Frequency of accident occurrence during service life (frequency of materialization of a certain type accident)</th>
<th>Categories of accident severity degree*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Catastrophic</td>
</tr>
<tr>
<td>Practically inevitable (V > 1) /year or more</td>
<td>A</td>
</tr>
<tr>
<td>Probable (1) /year > (V > 10^{-2}) /year or once per 1 — 100 years</td>
<td>A</td>
</tr>
<tr>
<td>Unlikely (10^{-2}) /year > (V > 10^{-4}) /year or once per 100 — 10000 years</td>
<td>A</td>
</tr>
<tr>
<td>Rarely (10^{-4}) /year > (V > 10^{-6}) /year or once per 10000 — 1000000 years</td>
<td>A</td>
</tr>
<tr>
<td>Practically impossible (V < 10^{-6}) or more than once per 1000000 years</td>
<td>B</td>
</tr>
</tbody>
</table>

* Refer to Table 2.3.1-2.
** \(V = \) accident frequency/probability.

Table 2.3.1-2

<table>
<thead>
<tr>
<th>Category</th>
<th>Exposure on personnel</th>
<th>Environmental effect</th>
<th>Property damage</th>
</tr>
</thead>
</table>
| I | Multiple human losses | Global or national disaster | 1. > 10 million US dollars.
| | | | 2. Disaster is a wreckage or complete structural destruction of a facility when its successive restoration is unreasonable |
| II | Single human losses | Recovery time > 1 year | Recovery cost > 1 million US dollars | 1. > 1 million US dollars.
| | | | 2. Down time of the facility (over a month) due to accident, significant repair of hull structural elements or frame structures |
| III | Long disability | Recovery time > 1 month | Recovery cost > 100 thousand US dollars | 1. > 100 thousand US dollars.
| | | | 2. Down time of the facility (several days) due to accident, repair work not related to hull structural elements or frame structures |
| IV | Insignificant effect | Recovery time < 1 month | Recovery cost < 1 thousand US dollars | 1. < 1 thousand US dollars.
| | | | 2. Short inactivity due to accident (not resulting in the facility damage) |
During analysis three groups of the objects, which may be affected due to the accident, are determined:
personnel;
environment;
tangible objects.

The concept "individual risk", which means a frequency of individual injury as a result of the factors of danger under consideration, is used as the characteristic of risk indices for the personnel.

2.3.2 Characteristics of risk analysis procedures, depending on the accident category:
A — quantitative risk analysis is mandatory or special safety measures are desirable;
B — quantitative risk analysis or certain safety measures is desirable;
C — qualitative risk analysis or some safety measures are recommended;
D — no risk analysis and special safety measures are required.

2.3.3 Table 2.3.3 presents correspondence of the hazard level classification according to the Safety Rules of the Rostekhnadzor and the MODU/FOP Rules of Russian Maritime Register of Shipping and GOST R.

<table>
<thead>
<tr>
<th>Register Rules for MODU/FOP</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
<th>Level 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register Rules for Oil-and-Gas Equipment†</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOST R 51901.1:2002</td>
<td>B</td>
<td>C</td>
<td>M</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†Refer also to the Safety Guidelines "Methodical basics on analyzing hazardous factors and assessing risk of accidents at hazardous production facilities" (Rostekhnadzor).

The identification of hazards and analysis of consequence of their materialization allow preliminarily determination of the hazard and risk priority. According to the matrix, all hazards are distributed over three risk levels:
tolerable;
as low as reasonably practicable;
t intolerable.

Intolerable hazards are those in respect of which the risk that cannot be justified under any circumstances, excepting force majeure. Referred to such hazards are the consequences considered as catastrophic. This risk level is denoted by "A" in the risk matrix.

Tolerable hazards are those in respect of which the risk is acceptable and justified reasoning from social and economic considerations. The risk associated with the object operation is acceptable if the society is ready to take this risk for the benefit due to the object operation. These levels are denoted by "C" and "D" in the risk matrix.

The "As Low As Reasonably Practicable" (ALARP) level falls between the tolerable and intolerable risk levels and is denoted by "B" in the risk matrix.

2.3.4 In compliance with the Register requirements, in order to assess the damage suffered by personnel, annual individual risks (AIR) are adopted as safety criteria:
unacceptable risk level: > 10\(^{-3}\) fatalities per year;
negligible risk level: < 10\(^{-6}\) fatalities per year;
the range within 10\(^{-3}\) to 10\(^{-6}\) is the ALARP region.

The individual risk criteria are intended to protect the personnel against an excessive risk effect. The individual risks do not depend on the number of working people running a risk and therefore are comparable for various situations. It means that the individual risk criteria developed for the shore-based workers may be also used for offshore installations. Based on this conclusion, the figures taken from the Safety Rules of the Rostekhnadzor are used in the risk assessment matrix.

2.3.5 The individual risk criteria are the following:
maximum acceptable risk: 10\(^{-3}\) per man per year;
maximum acceptable societal risk: 10\(^{-4}\) per man per year;
broadly tolerable risk: 10\(^{-6}\) per man per year.
2.3.6 Criteria for a societal risk (≥10 deaths):
- risk > 10^{-3} — unacceptable risk zone;
- risk < 10^{-3}, but > 10^{-5} — tight risk control zone (intermediate risk values);
- risk < 10^{-5} — unconditionally acceptable risk zone.

The societal risk specifies the extent and probability (frequency) of accidents and is defined by a distribution function of losses (damage) generally referred to as the FN curve (Farmer's curve).

2.3.7 For reference it should be noted that the Health and Safety Executive (HSE) of Great Britain holds to the following principles in assessing safety at sea: "The persons, who follow legal regulations, shall set up the criteria of their own for the acceptability and tolerance of an individual risk. However, the maximum level of an individual risk associated with a fatality shall be generally assumed equal to 1 out of 1000 (10^{-3}) per year, and of the broadly tolerable level of an individual risk, within 1 out of 10000 (10^{-4}) — 1 out of a million per year (10^{-6}) (also refer to Table 4.3.3).

As a tentative criterion to evaluate a risk during design, the individual risk value computed on the basis of reliable statistics on fatalities in various incidents on the objects associated with the construction of the world continental shelf may be used. Such statistics is available in electronic databases (e.g. WOAD — World Offshore Accident Data) for North Sea sectors of Great Britain and Norway, and of the Gulf of Mexico as well (refer to Appendix 4).
2.4 IDENTIFICATION OF HAZARDS FOR STRUCTURAL STRENGTH OF FPU/MODU/FOP

2.4.1 The matters of structural strength shall be considered during design, construction and operation of FPU/MODU/FOP, and also during hull structure modernization. Adequate structural strength is provided by redundancy and operational reliability (refer to 2.2.2, 3.3.2, 4.1.6.6.4, Part XV "MODU and FOP Safety Assessment" of the MODU/FOP Rules).

2.4.2 The final materialization of the algorithm on assessment of damage consequences may be carried out by construction of the failure and event trees.
2.5 SPECIFIC ACCIDENT SITUATIONS

2.5.1 Depending on the FPU/MODU/FOP type and purpose, specific accident situations resulting from fatigue stress accumulation primarily for the FPU casing may be generated, which shall be subject to the risk analysis and assessment taking into account a specific character.

2.5.2 Table 2.5.2 presents an exemplary list of the FPU/MODU/FOP items, which generally feature high risks, to protect the personnel on the main types of shelf installations. These items in the HSE documents are termed as critical safety elements. The List is intended to identify the high risk items in order to prevent their missing in risk analysis. Nevertheless, the List cannot be taken as being comprehensive and cannot exclude considering additional items and risks in the analysis.

Table 2.5.2

<table>
<thead>
<tr>
<th>List of potentially high risk FPU/MODU/FOP items</th>
<th>MODU</th>
<th>FPU</th>
<th>FOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure items</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame constructions and piles</td>
<td>—</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Gravity structures</td>
<td>—</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Jacking system of self-elevating MODU</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hull (including watertight closures)</td>
<td>X</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>Drilling derrick</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Fresh fire fighting water tanks</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Top structure, including a catwalk bridge and flare stack</td>
<td>—</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Helicopter deck</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cargo-handling gear</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pedestal cranes</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Foundations</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Blast relief structures</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Submersible items including underwater structures</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Explosion protection with detonation wave removal (blast relief panels)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Protection of submersible items including underwater structures</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Turret</td>
<td>—</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>Drilling and process equipment</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Drilling mud system</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Blowout equipment</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Well choke and kill lines (including emergency discharge)</td>
<td>X</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cementing system</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Marine risers</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Instrumentation of well control management systems</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Diverter system</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Electrical equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency (uninterruptible) power supply systems</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Accumulators</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Protective devices</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Elements of ignition protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protective earthing</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Electrical equipment in hazardous areas</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Protection of high temperature work surfaces</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Natural ventilation</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Explosion and fire safety</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Air composition control systems</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fire alarm systems</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Water fire main linear system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sprinkler system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fire pumps</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fire circular main</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Foam fire-extinguishing system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Carbon dioxide smothering system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Structural fire protection</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ventilation systems</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Temporary shelter, escape routes and facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary shelters</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Escape routes</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lighting equipment of a helicopter platform</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Escape route lighting</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>List of potentially high risk items</td>
<td>MODU</td>
<td>FPU</td>
<td>FOP</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Intercommunication and alarms</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>External communication</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Life-saving appliances and personal life-saving systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal lifejackets, immersion suits, life-saving equipment of a helicopter deck</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Life-saving appliances:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life-saving systems (personal life-saving appliances, knotted ropes, nets)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ladders</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Liferafts</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Duty vessel with a fast lifeboat</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Localization of hydrocarbon raw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil-and-gas equipment and piping (including shut-off fittings and instrumentation)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic emergency shutdown systems (automated process control system, ESD system)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pressure relief systems</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Quick-closing valves in engine room</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Air holes</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Underdrainage and open-cut drainage from hazardous areas</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Marine risers with shut-off valves</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Piping</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Shut-off valves of a subsea pipeline</td>
<td>—</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sea component</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position mooring system including an anchor release device</td>
<td>X</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>Navigational aids (including lights, fog gong, hydrometeorological observation system)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Early warning system radar</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ballast and drain systems. Object stability when both are used</td>
<td>X</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>Inert gas system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dynamic positioning system</td>
<td>X</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>Thrusters</td>
<td>X</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>Auxiliary equipment:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gangways</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gas cylinders</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Electric generators</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Public address system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Equipment for drill-holes survey</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Storage for radioactive components</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Storage for chemicals</td>
<td>X</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>Emergency schedule control system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 2.5.2 — continued
2.6 METHODS OF RISK ANALYSIS

2.6.1 General requirements.
When selecting and applying the methods of risk assessment, the requirements below are recommended to be followed:
- method shall be scientifically grounded and comply with the hazards under consideration;
- method shall result in the form, which allows better understanding of the ways of hazard materialization and directing the ways of risk reduction;
- method results be repeatable and verifiable.

2.6.2 It is recommended to start the risk analysis with an algorithm development.
Fig. 2.6.2 presents the sequence of basic operations (stages) on the qualitative risk analysis of the most essential processes taking place on any FPU/MODU/FOP.

Fig. 2.6.2 Sequence of (algorithm) qualitative risk analysis
2.6.3 Qualitative methods of risk analysis.

2.6.3.1 Checklist.

Use of checklist is a usual method for identification of compliance with standards. The checklist is simple for use and may find application for identification of hazards during the FPU/MODU/FOP design, construction, operation, conservation and utilization. The minimum acceptable level of hazard is determined with the help of the checklist.

Where necessary, checklists may be drawn up for specific situations and used for assessment of proper execution of standard process operations and for specifying the problems to be emphasized. The checklist is the quickest method for analysis of accident situation at identification of hazards and is very effective in the management process of standard accident situations.

2.6.3.2 "What if ..." analysis.

This method is much like the one of checklists use. The method is based on the questions, which begin with "What if ..." and considers the situation development after "What if...". The analysis compilers shall be adequately realistic to avoid improbable scenarios of events development.

The "What if ..." type analysis may be used for identification of hazards during the FPU/MODU/FOP design, modification, operation, conservation or utilization. It results in the list of problem locations potential for accidents materialization and provides the methods supposed to avoid risks and prevent accidents.

To identify cause-and-effect relations between those events, the logical-and-graphical methods of analysis, determined as "failure trees" and "event trees", are used.

2.6.3.3 Failure mode and effects analysis (FMEA).

2.6.3.3.1 This analysis is used in definition of individual types of failures, which may cause or contribute to accident materialization. The analysis of the type of failures and of their consequences may by used along with other quantitative methods of hazard identification.

The purpose of this analysis is definition of failure types and each failure consequences for FPU/MODU/FOP. At the design stage, this method may be used for identification of needs in additional protective measures or in their reduction. The failure analysis during the FPU/MODU/FOP modification is used for definition of its impact on existing structures and equipment. This method is also used in operation for definition of individual failures that may result in significant consequences. So far as this method is subjective, at least two specialists competent in FPU/MODU/FOP, processes and equipment are needed for its use.

The detailed description of the methods recommended for risk analysis is given in Appendices 2 and 3 to the SP Rules.

2.6.3.4 Hazard identification (HAZID) study.

A multidisciplinary team shall take part in these studies, which determines accident situations and the FPU/MODU/FOP operability, using the structural form of the "What if ..." type analysis.

The structural solution of each component of a process scheme is analyzed in the form, in which it is presented in design documentation.

The HAZID method may be used at all the stages of the FPU/MODU/FOP design, modification and operation. The result of the analysis is the list of problems associated with potential accidents or reduction of the FPU/MODU/FOP operability, as well as the types of malfunctions/failures and the consequences of each malfunction/failure.

Practice shows that major accidents are characterized by a combination of accidental events generated with a various frequency at the various stages of the accident materialization and progress: equipment failures, human factor, off-design external effects, collapse, blowout, spills, dissemination of substances, ignition, explosion, intoxication, etc.
2.7 QUANTITATIVE METHODS OF RISK ASSESSMENT (QRA)

2.7.1 Failure tree and event tree analysis.

The failure tree (error chain) analysis is a deductive method that focuses on a particular event resulting in an accident which is called the top event, and on the construction of the logic diagram of all the relationships that may cause this event. The error chain is a graphical and logical illustration of various structural errors, equipment failures, effect of environmental conditions and human factor, which may cause an accident.

The event tree analysis is an inductive method intended for study of the accident roots and identification of key errors that initiated the accident. It also provides analysis with the base for determination of the accident risk degree.

The event tree analysis consists in constructing a sequence of events (tree branches) resulting in the top event (event at the top of a tree).

This method is used during the FPU/MODU/FOP design, operation, re-equipment and utilization. It is particularly useful in the analysis of new technologies, structural solutions and operational conditions, which have not passed evaluation test in practice yet. The method provides:
- qualitative logical description of potential problems, including combinations of the potential event scenarios;
- quantitative assessments of event frequency/probability (from 0 to 1) for each tree branch, which allow determining the contribution of each event to the assessment of the risk degree.

2.7.2 Statistical methods.

2.7.2.1 Risk assessment is aimed at focusing attention on the areas of the highest risk levels, and also at identifying the factors having an important effect on them.

2.7.2.2 Among accident situations under consideration shall be those, which allow identifying the various types of risks (for the personnel, environment, structures, equipment and technical devices).

2.7.2.3 Risk may be defined as a frequency or probability of event \(B \) initiation at event \(A \) occurrence (dimensionless value within the range of 0 — 1).

2.7.2.4 The quantitative assessment of contributions to risks is typically undertaken in three stages based on the accident statistics:
- the levels of accidents are defined depending on their recurrence (frequency);
- the severity of accident consequences stated in risk terms;
- the distribution of combined characteristics across all the levels of accidents is defined in risk terms to provide a possibility of assessing the total risk contribution among the levels (refer to Table 2.3.1).

2.7.2.5 The QAR mathematical methods may comprise different statistical models, including Monte Carlo statistical method\(^1\), composite probability formula and other adequate statistical methods (refer to 3.1.5, Part XV "MODU and FOP Safety Assessment" of the MODU/FOP Rules).

2.7.3 Impact diagram.

The impact diagram is mostly used for comparing some versions of a solution. Emphasis shall be placed on the higher risk areas. In these cases, the diagram that materializes the proposal based on the risk matrix (refer to 2.3.1) may be applied. On the basis of the impact diagram may be obtained both quantitative and qualitative results (refer to 3.1.7, Part XV "MODU and FOP Safety Assessment" of the MODU/FOP Rules).

2.7.4 The risk assessment results in the following:
- identification of high risk areas;
- identification of factors radically affecting the risk level in a managed mode;
- re-evaluation of risks for each version of risk control and management.

\(^1\)The common name of a group of numerical methods based on numerous "experiments", among which are selected those with successful outcomes and their probability is estimated.
2.8 ASSESSMENT OF INDIVIDUAL AND SOCIETAL RISKS

2.8.1 During the analysis of accident situations, the yearly individual and societal risks featuring the frequency of emergence of striking effects of a certain kind are determined (refer to 3.2, Part XV "MODU and FOP Safety Assessment" of the MODU/FOP Rules).
2.9 EXPERT ANALYSIS METHODS

2.9.1 Delphi method\(^1\).

Using the Delphi method:

an "informed intuitive judgement" is materialized and a problem is formulated for this purpose;

a team of experts who can comprehensively cover the formulated problem is selected;

the conditions enabling the most effective teamwork are created, and for this purpose the team is headed by an experienced analyst who is well aware of the Delphi technique;

all the team members are provided with the information available on the problem under consideration.

The sequence of conditions in use of the Delphi method, in terms of organization and procedure, is presented as follows:

.1 a leading analyst or someone else on his behalf prepares the initial information on the problem, which is presented to the team of selected experts in writing or verbally, or in both ways, where necessary;

.2 the experts submit their judgement assessed either by ranking the versions proposed (if quantitative assessment is impracticable) or by the quantitative assessment of the event under consideration, where possible;

.3 the opinions received from the individual experts guided by the analyst are compared and comments of each expert are discussed;

.4 the experts reassess their initial judgements when, from their standpoint, this is justified;

.5 the coefficients of concordance and pair correlation are determined (refer to 3.4.2 and 3.4.3, Part XV "MODU and FOP Safety Assessment" of the MODU/FOP Rules);

.6 the final result of assessment is drawn up.

2.9.2 The risk analysis methods may be used separately or may complement each other, qualitative analysis methods may include quantitative risk criteria (for the most part, according to expert analysis with the use of the "probability — severity of consequences" matrix for hazards ranking). Where possible, the complete quantitative risk analysis shall use the results of the qualitative analysis of hazards (refer to Table 2.9.2).

<table>
<thead>
<tr>
<th>Method</th>
<th>Siting (pre-project works)</th>
<th>Design</th>
<th>Commissioning or decommissioning</th>
<th>Operation</th>
<th>Re-equipment/ conservation/ utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>"What if ..." analysis</td>
<td>0</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Checklist analysis</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Hazard and operability analysis</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Analysis of failures and consequences</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>"Failure tree and event tree" analysis</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Quantitative risk analysis</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>

"0" — least acceptable method of analysis;

"+" — recommended method;

"++" — the most appropriate method.

\(^1\)Analytic method of a problem assessment by experts to verify the concordance of the expert opinions, analyze the results and develop recommendations.
3 SELECTION OF RISK CONTROL AND MANAGEMENT VERSION AT ENVIRONMENTAL EFFECTS

3.1 GENERAL

3.1.1 At the design stage of FPU/MODU/FOP, a concept of safety to prevent collisions shall be created that comprises the three-stage control of risk, for which purpose are introduced:
 - safety echelons around FPU/MODU/FOP;
 - effective protection of a hull structure against a collision;
 - limitations of damage parameters.

3.1.2 In settling problems associated with the FPU/MODU/FOP safety at environmental effects, all their unfavourable combinations shall be considered.

3.1.3 FPU/MODU/FOP shall be provided with instrumentation to monitor the environment and the FPU/MODU/FOP key responses in characteristic points to intensive environmental effects (wind, very rough sea, ice, seismic effects, etc.) (refer to Section 4, Part XV "MODU and FOP Safety Assessment" of the MODU/FOP Rules).
3.2 ANALYSIS OF POTENTIAL ACCIDENT SITUATIONS AT UNCONTROLLED WELL FLOWING AND BLOWOUTS

3.2.1 Description of accident process.
Drilling, especially drilling-in, may cause fluid ingress into the well during drilling after unsatisfactory cementation of columns and in the course of the well operation. The gas-oil-water shows precede the uncontrolled well flowing. The further development of gas, oil and water shows may result in a blowout of well fluids or drilling mud/flushing water and emergency flowing, which may initiate an explosion and fire situation.

Uncontrolled flowing is regarded as an uncontrolled outflow of well fluids through a wellhead due to the absence, failure or leakage of shut-off facilities, or due to spring formation.

3.3.2 Reasons of transition of gas, oil and water shows and blowouts into an emergency condition during drilling, well workover and servicing, and also during the well perforation are determined as the following:
- untimely detection of gas, oil and water shows;
- lack of drill crew members' training on the prevention and control of potential gas, oil and water shows;
- lack of measures on the wellhead sealing;
- improper actions on the wellhead sealing;
- inconsistency between the well design and geological conditions (attitude of bed, reservoir pressure and temperatures, depth of layers subjected to hydraulic fracturing, etc. are ignored);
- poor workmanship in cementing conductors, intermediate and production tubing;
- leakage of threaded joints and integrity damage of casing strings, as well as defects of the wellhead assembly;
- lack of monitoring of blowout equipment at the wellhead and non-compliance of its technical parameters to operational conditions at the well;
- failure and improper operation of BOPs;
- lack or failure of equipment (non-return valves, ball valves, cut-off valves) for prevention of a blowout through the drill pipes;
- lack of the necessary quantity and reserve of drilling mud of proper quality at the well;
- poor labour discipline.

3.2.3 During construction of an event tree to assess a "blowout" hazard, the parameters below shall be taken into account:
- coming blowout signs;
- location of a well fluid show during blowout;
- well fluid flow;
- blowout direction;
- details of measures undertaken to regain control of the well operation;
- blowout duration;
- probability of blowout ignition and delays before the ignition.

3.2.4 At that it shall be taken into account that the blowout duration depends on the way of regaining the well control and the efficiency of its application, and also on a liquid ingress into the well.
3.3 ANALYSIS OF POTENTIAL ACCIDENT SITUATIONS
IN THE EVENT OF FIRE DURING PROCESS EQUIPMENT OPERATION

3.3.1 Fire classification.1
Fires are classified under the following classes in terms of types of combustible substances and materials:
.1 fires of solid combustible substances and materials (A);
.2 fires of combustible liquids or melting solid substances and materials (B);
.3 fires of gases (C);
.4 fires of metals (D);
.5 fires of combustible substances and materials of live electrical power units (E);
.6 fires of nuclear materials, radioactive wastes and radioactive substances (F).

3.3.2 Hazardous fire factors.
Hazardous fire factors affecting people and property are the following:
.1 flame and sparks;
.2 heat flow;
.3 elevated environment temperature;
.4 high concentration of toxic combustion and thermal decomposition products;
.5 low oxygen concentration;
.6 reduced visibility a-smoke.

3.3.3 The hazardous fire factors are associated with the following:
.1 fragments, parts of the failed structures, process installations, equipment, units, arrangements and other property;
.2 radioactive and toxic substances and materials from the failed process installations, equipment, units, arrangements and other property which enter the environment;
.3 high voltage on the current-conducting parts of process installations, equipment, units, arrangements and other property;
.4 hazardous factors of an explosion due to fire;
.5 effect of extinguishing media.

3.3.4 Explosion-and-fire hazardous properties of hydrocarbon mixtures are characterized by the following indices:
concentration limits for propagation of flame;
ignition temperature;
ignition temperature limits;
flash point.
The explosion-and-fire hazard indices are stipulated by the normative documents on fire safety and are used for establishment of the requirements for use of substances and materials, and for computing a fire risk.

3.3.5 Calculations for estimation of a fire risk are the integral part of a formal safety assessment (FSA) being part of an industrial safety declaration at the objects, for which it shall be developed in compliance with the RF legislation (refer to Section 5, Appendix 4).

3.3.6 The procedure for calculation of a fire risk assessment is established by the RF normative legal documents.

3.3.7 During operation of the process equipment the following types of fire are possible:
fire characterized by combustion in a gas-vapour phase;
fire characterized by spray combustion.

1The requirements of Federal Law No. 123-FZ "Technical Regulations on Fire Safety Requirements" dated 22 July 2008 have been taken into consideration.
The explosion hazard of process installations is defined not only by the physical and chemical properties of hydrocarbons and their mixtures, but process parameters as well. The higher the process temperature and pressure, the more favourable conditions for generation of a hazardous cloud formed due to equipment depressurization and process medium discharge into the air.

It is assumed that the discharge will not ignite at once, but after a delay, and will result in an explosion rather than in spray combustion. Therefore, the probability of a jet fire is ignored. The explosion probability and individual risk as a result of explosion are calculated according to 2.8.

Fire in a gas-vapour phase may develop in any location, where inflammable liquids are available, and it is characterized by a small or zero kinetic energy due to necessity to generate inflammable vapours, and by a relatively low level of heat flows.

Fire size in a gas-vapour phase is determined on the basis of a balance between a leakage rate and combustion rate, and depends on the quantitative parameters of the liquid in the equipment under consideration and on the structural design of the latter (refer to Section 5, Appendix 4).

Inflammable liquid volumes for calculation of fire parameters in spaces are assumed for the most unfavourable version of fire spread (at start, stop, loading, unloading, storage, repairs, normal operation and failure of apparatus or process equipment) when the maximum amount of substances and materials, being the most hazardous with regard to ignition, penetrates (or is permanently available) in the space.

3.3.8 The ignition of an accident blowout with static discharges is a consequence of some reasons based on the following phenomena:
- triboelectric effect, which occurs at the mutual friction of moving flow particles and fixed structures with the resultant change of an aggregative state of a flowing substance;
- dispersion of a liquid phase within a jet;
- deformation of a flowing medium at an impact in a solid obstruction.

3.3.9 The factors increasing the probability of a flowing ignition due to static discharges are: increased rate of flowing (increased flowing production rate); occurrence of solid and liquid foreign components within a jet; mechanical effect on the flowing jet with the resultant change of its shape; a jet strike against the free surface of a liquid (e.g. oil or condensate spilled at the wellhead).

3.3.10 At fires of gas-and-oil flowing all the oil is generally burnt up in the air, while at fires of oil flowing some oil spilled around continues burning on the FPU/MODU/FOP decks and a water surface.

3.3.11 Fires on FPU/MODU/FOP are in principle divided into two categories:
- fires on the exposed decks;
- fires in internal spaces.

3.3.11.1 A fire on the exposed decks caused by a gas blowout from a drainage system or by the pipeline/tank/apparatus breaking shall be classified as the most hazardous. The particular hazard of this fire is that firstly, the liquid phase spread covers a large area and a large vapour cloud is formed; secondly, the inflammable liquid and/or gas influx is rather large and practically uncontrollable, especially at the initial stage of fire; thirdly, a gas-vapour combustible mixture, which consists of air, gases and vapours coming from the drainage systems and ruptures, is formed in the air above the unit. The sources of such mixture ignition may be:
- faulty deck lighting;
- open flame;
- sparks of any origin (welding operations);
- power equipment exhaust gases;
- combustible parts of equipment.

During assessment of hazard "fires caused by the leakages of produced well fluids from process systems", the following potential sources of hydrocarbon leakage in the process system shall be considered:
- swivels;
- turrets;
- risers;
- process piping;
In order to define a possible mode of equipment failures and the conditions of process liquid leakages, the FPU/MODU/FOP components shall be grouped by the categories, such as "pressure vessels", "pumps/compressors" and "storage tanks".

During construction of a logical-and-graphical diagram of fire propagation (failure/event trees), the following shall be considered:

- level of the equipment hazard;
- chemical composition of potentially ignitable substance;
- environmental conditions of an operational area (primarily, wind direction and velocity);
- actual capabilities of shutting off the source of ignitable substance (oil, natural gas or liquefied natural gas);
- presence of other vessels or structures close to FPU/MODU/FOP;
- opportunity of the follow-up explosion(s);
- technical condition of the FPU/MODU/FOP hull;
- effectiveness of fire protection operation, etc.

It shall be also considered that the given fire may result in an oil spill fire on the water surface, fire ball and vortex.

3.3.11.2 Fires in the FPU/MODU/FOP internal spaces are divided into three main groups:
- fires in machinery spaces, energy compartments (except purely electrical and technical compartments and spaces), control stations and corridors;
- fires of electrical equipment;
- fires in process, service, domestic and accommodation spaces.

The main reasons of fire emergence in the internal spaces are the following:

- violation of operating conditions and rules for the equipment and device operation;
- accidents and failures of the equipment, machines, machinery and devices, as well as of their service systems.

The source of fire emergence in the internal spaces may be the following:

- sparks of any origin;
- open flame;
- surfaces heated up to a temperature of ignition point of fuels and lubricants (uninsulated parts of diesel-generator gas exhaust, overheated bearings, electrical equipment);
- faulty electric wiring.
3.4 MEASURES ON MANAGEMENT OF THE RISKS ASSOCIATED WITH EXPLOSIONS, DROPPING AND FLYING OBJECTS

3.4.1 Measures on management of the risks associated with explosions, dropping and flying objects may be integrated into two groups by the attribute of their effect on the various stages of an accident:

- measures affecting the potential source of an accident situation and providing a lower probability of accident situation occurrence;
- measures affecting the accident development and providing mitigation of the accident consequences.

The first group measures refer only to the potential sources of explosions and dropping (flying) objects on FPU/MODU/FOP.

3.4.1.1 The basic measures of the first group are the following:

- conservative approach at design stage based on a wide use of design experience regarding provision of safety;
- at arrangement of process blocks with regard to hazards, determination by the method of hierarchy analysis of the most hazardous apparatus (block centre) in the process block in order to construct event/failure trees;
- performance of periodical surveys of the equipment and other potential sources of explosion and dropping (flying) objects in service;
- monitoring of certain conditions, which may indicate failure initiation, e.g. readings of vibration and acoustic sensor systems installed on large equipment provided with rotating units;
- the whole complex of organizational fire safety measures.

3.4.1.2 The basic measures of the second group are the following:

- arrangement and proper layout of equipment (refer to 4.1);
- backing-up of the systems, which can affect a process of the accident development and an extent of the accident consequences;
- physical separation of the back-up safety systems;
- application of special structural protection systems;
- development of special design for the standard structures to be used as the protective barriers;
- organizational support of the least hazardous, regarding the consequences of the accident development and propagation of striking factors.

3.4.1.3 To provide the necessary level of safety (as low as reasonably practicable), the whole complex of the first and second group measures shall be materialized.

3.4.2 The main external and internal sources associated with an effect of explosions, dropping and flying objects (fragments) on FPU/MODU/FOP are the following:

- accidents on transport vessels-shuttles nearby FPU/MODU/FOP, which result in explosions and/or in occurrence of dropping/flying objects due to the accident;
- vessels (tanks) and pipelines pressurized and containing gas or liquid hazardous substances;
- structures and equipment having significant kinetic energy.

The degree of the striking factor of a flying (dropping) object is primarily characterized by its mass and impact velocity. In addition, the striking effect of the flying object also depends on its shape and an angle between a velocity vector and an impact plane.

The explosion effect on the object is caused by the quick change of an excess air pressure in the form of an air shock wave. The level of an explosion hazard depends on the value of the maximum excess pressure. To assess the object response to an explosion effect, the time of excess pressure rise and drop shall be determined. The failure of some potential explosion sources may be accompanied by the formation of an excess air pressure and simultaneous generation of flying objects (fragments).

For instance, it is typical for the explosion failure of the pressure vessels.
The potential primary factors associated with an explosion and dropping (flying) objects are the following:
- deformation, damage, structure and equipment failures;
- injuries and fatalities of the personnel;
- displacement (shaking) of structures;
- generation of flying objects;
- emergence of caustic, toxic gases, vapours and aerosols;
- initiation of fire.

The primary factors may initiate a set of secondary factors. For instance, shaking of structures may result in damages to equipment, a drop of loose objects, injuries of the personnel, etc.

3.4.3 The Register establishes three levels of hazard due to explosion and a flying (dropping) object (refer to Table 2.3.1):
- I — features the maximum possible values of striking factor parameters and characteristics for a given source;
- II — features the values of striking factor parameters and characteristics not relating to levels I and III;
- III — features the values of striking factor parameters and characteristics, which cause no appreciable consequences for the FPU/MODU/FOP structures, equipment, personnel and for the environment.

Where the values of striking factor parameters and characteristics for a given source cannot be determined with an adequate degree of reliability, a conservative approach for safety assessment shall be used assuming that the level I hazard is materialized.

The level III hazard is defined by the maximum tolerable levels of regular loads on structures, equipment and personnel.

Regarding an effect on a person, to be considered are the following striking factors: direct fire effect, excess pressure, thermal radiation, gas contamination and air toxicity.

The following loading levels on the personnel may be accepted as tolerable:
- tolerable levels of accelerations (for sitting and standing positions) — 0,9g (along all the coordinate axes);
- at the impact of a head against an obstacle, the collision velocity shall not exceed 2,3 m/s;
- at impacts by the objects having a mass of 1, 2, 3, 4 and 5 kg, the impact velocity shall not exceed 5; 3,7; 3; 2,5 and 2,2 m/s, respectively;
- the value of an excess pressure of a shock wave shall not exceed 35 kPa.

3.4.4 All the technical requirements on the FPU/MODU/FOP fire protection are given in Part VI "Fire Protection" of the MODU/FOP Rules.
4 RISK MANAGEMENT

4.1 RECOMMENDATIONS ON REDUCING BLOWOUT AND FIRE RISKS

4.1.1 Fire-fighting measures on FPU/MODU/FOP are reasonably to divide into four groups.
4.1.1.1 The first group deals with the measures of organizational character, namely:
- development and formal drawing up of instructions for performance of all the works carried out on FPU/MODU/FOP;
- development of duty regulations for the FPU/MODU/FOP entire personnel;
- strict observance of the safety standards and requirements during performance of any works on the unit, implementation of a permittance system for conducting fire-hazardous works;
- development and formal drawing up of a Process Procedure, the Fire Plans and an Accident Elimination Plan containing clear instructions on the personnel actions in fire extinguishing;
- development and implementation of a training system concerning the works on FPU/MODU/FOP with regular check of the personnel knowledge and drill exercises.

4.1.1.2 The second group includes the measures of technical character aimed at prevention of possibility of fire initiation on FPU/MODU/FOP. The most essential measures are the following:
- use of explosion- and fire-proof equipment, machines, machinery, devices and systems in fire-hazardous areas and spaces of FPU/MODU/FOP;
- installation of a special system on FPU/MODU/FOP, which prevents natural gas blowouts;
- use on FPU/MODU/FOP of the systems for transfer of inflammable liquids where the possibility of leakage is kept to a minimum;
- provision of the air composition required in the FPU/MODU/FOP spaces by ventilation and installation of gas detection systems;
- limitations on the use of combustible materials in service, general purpose and accommodation spaces.

4.1.1.3 The measures on structural protection against fire aimed at prevention of its propagation on FPU/MODU/FOP (refer to Part VI "Fire Protection" of the MODU/FOP Rules) form the third group of fire-fighting measures. In terms of risk control, the following measures among them shall be considered as crucial:
- block-module design of FPU/MODU/FOP according to a process principle;
- tier arrangement of process equipment;
- separation of one block/module from another with relevant spaces, as well as of one fire-hazardous space from another with gas-tight fire-resistant bulkheads and specially ventilated cofferdams and airlocks;
- implementation of special measures for ensuring safe evacuation of the personnel from any service, general purpose or accommodation spaces through passageways, corridors, airlocks, trunks provided with fire protection means;
- arrangement on FPU/MODU/FOP of a special space — temporary shelter wherein the personnel may be in safety within a certain period of time required for fire extinguishing or evacuation of people from FPU/MODU/FOP, but not less than an hour.

4.1.1.4 The fourth group includes active measures on fire fighting. It comprises fire extinguishing systems, which use various physical and chemical principles of operation (refer to Section 3, Part VI "Fire Protection" of the Rules for the Classification and Construction of Sea-Going Ships).
4.2 RECOMMENDATIONS FOR DECISION MAKING ON ACCIDENT RISK REDUCTION

4.2.1 The recommendations shall be based on acceptability levels of risks and their underlying causes, on the comparison of risk control and management alternatives and shall be followed to provide reduction of risks down to the most possible level at all the stages of the FPU/MODU/FOP design and operation.

The objective comparison of alternatives shall be provided based on the potential reduction of a risk level and cost effectiveness of risk control and management alternatives. The recommendations shall correspond to the IMO and IACS recommendations, and shall comply with the requirements of the RF Rostekhnadzor normative documents.

4.2.2 All the decisions made for the accident risk reduction shall comply with the current regulations of supervisory bodies, as well as of the Register, and the operational standards specified in the process regulations for FPU/MODU/FOP and in the relevant operating instructions approved by the Register. Operational standards are used everywhere during the entire life cycle of FPU/MODU/FOP. It is vital that they be related to the systems and processes, which facilitate the reduction of the total risk. At that the number of operational standards therewith shall improve the safety management.

The operational standards relate to the particular types of FPU/MODU/FOP and they are recommended to be formed at three levels:
- operational standards based on risk assessment, which specify quantitative parameters;
- operational scenario standards, which may include qualitative or quantitative risk assessments specifying a particular objective for managing risks when a specific hazard or a group of hazards occur;
- operational system standards, which specify the FPU/MODU/FOP safety level that shall be provided by all systems to provide the tolerable total level of risks.

4.2.3 The statistical data given in Appendix 4 allow developing the recommendations on reduction of fire risks being the most probable scenarios of escalating hazardous situations on FPU/MODU/FOP, as the analysis of these statistical data and their extrapolation provide a designer with a possibility to correctly assess and exclude existing potential risks.

4.2.4 Examples of the practical quantitative assessment of separate types of risks are given in Appendices 2 — 4, Part XV "MODU and FOP Safety Assessment" of the MODU/FOP Rules.
4.3 AS LOW AS REASONABLY PRACTICABLE (ALARP) PRINCIPLE

4.3.1 ALARP principle with regard to safety is carried out as follows.

4.3.1.1 The identification of hazards and consequence analysis of their materialization allow preliminary definition of the hazard priority. For this purpose a risk matrix is used (refer to Table 2.3.1), according to which all the hazards are distributed over three levels: intolerable, as low as reasonably practicable and tolerable.

Intolerable hazards are those in respect of which the risk cannot be justified except force majeure circumstances. Such hazards are associated with catastrophic consequences.

Tolerable hazards are those, which materialization is remote, and their consequences are insignificant. In respect of these hazards no measures are required and they may be excluded from further consideration.

4.3.1.2 The ALARP level falls between the "tolerable" and "intolerable" levels and is determined by HAZOP (Hazard and Operability Study) method, analyzing the effect of the process parameter deviations (physical and chemical properties, pressures, temperatures, etc.) from the specified values in terms of a hazard initiation.

4.3.1.3 The risk matrix (refer to Tables 3.1.7 and 5.2.1, Part XV "MODU and FOP Safety Assessment" of the MODU/FOP Rules) is materialized by identification and comparison of specific potential risks in the areas of high risk using the impact diagram (refer to 3.1.7 and 5.2, Part XV "MODU and FOP Safety Assessment" of the MODU/FOP Rules). Following the objective definition, a working group of experts performing examination within the framework of the FSA methodology, is formed. The work is recommended to be conducted in three stages: preparation (work planning and organization), risk identification, processing and documenting.

Where risk cannot be quantified, the qualitative qualification of accident circumstances and the qualitative risk assessment are permitted.

4.3.1.4 As guidance in development of the arrangements for materialization of the ALARP principle given in Fig. 4.3.4 is a process of undertaking corrective actions (IACS Recommendation "Guidance on Managing Maintenance and Repairs") proposed for review, and Table 4.3.1.4 contains the oriented values of quantitative risk assessment of separate accident occurrence.

<table>
<thead>
<tr>
<th>Type of hazard</th>
<th>Fatality probability from a category "FPU/MODU/FOP personnel" per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well blowouts</td>
<td>1×10^{-6}</td>
</tr>
<tr>
<td>Fires due to leakages of produced well fluids from process systems</td>
<td>3×10^{-4}</td>
</tr>
<tr>
<td>Fires due to leakages of diesel fuel oil and lubricating oil from support systems</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>Industrial hazards</td>
<td>7×10^{-4}</td>
</tr>
<tr>
<td>Destructive wave/wind loads</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>Destructive ice loads</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>Destructive seismic vibrations</td>
<td>1×10^{-4}</td>
</tr>
<tr>
<td>Fall of helicopters when carrying the personnel</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>Accident with a transport/support vessel</td>
<td>1×10^{-5}</td>
</tr>
<tr>
<td>Fatalities among the personnel working on FPU/MODU/FOP at the fall of helicopters on FPU/MODU/FOP</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td>Accidents of general purpose/life support systems</td>
<td>3×10^{-5}</td>
</tr>
<tr>
<td>Failures of structures due to the ships' collisions with/docking impacts on FPU/MODU/FOP</td>
<td>2×10^{-6}</td>
</tr>
<tr>
<td>Dropping/flying objects</td>
<td>1×10^{-6}</td>
</tr>
<tr>
<td>Fatalities among the personnel during evacuation</td>
<td>7×10^{-5}</td>
</tr>
</tbody>
</table>
Process of corrective actions performance

Identify a problem

Establish the reason

Propose decisions

Assess decisions

One decision approved

All decisions rejected

Materialize a decision

Assess effectiveness

Effective

Ineffective

Complete

Fig. 4.3.1.4
5 SUBSTANTIATION AND COST EFFECTIVENESS ASSESSMENT
OF THE DECISIONS ON RISK REDUCTION

5.1 A cost assessment consists of the following stages:
- consideration of the above assessed risks in terms of frequency/probability and consequences to define the base cause;
- classification of the risk control and assessment versions defined in 4.1 and 4.3 to understand cost rates resulting from application of one or another risk control version;
- assessment and comparative effectiveness of each version depending on a relative cost.

5.2 Cost shall cover: initial cycle, all design stages, operation, repairs, modernization, utilization, personnel training, verification and validation (inspection, certification, etc.), losses due to environment pollution, indemnity for the third party and personnel liabilities.
- Cost estimation shall be performed on the basis of various recognized techniques and procedures.
- Cost is determined in relation to the personnel, organization, company, coastal zone population, etc. who is directly or indirectly affected by the accident.

5.3 At this stage the effectiveness of proposals is determined:
- cost of each risk control and management version mentioned above is estimated;
- cost of the measures mostly affecting the result is estimated.

5.4 The cost effectiveness of the measure selected is recommended to determine by experts.

5.5 Risk cost assessment may be used for substantiation of insurance rates in case of the damage liability insurance with regard to environment, personnel, population, third parties and for development of safety measures.
6 REQUIREMENTS FOR DRAWING UP THE RISK ANALYSIS REPORTS

6.1 The results of risk assessment at all design stages shall be considered, justified and drawn up in such a way that the specialists who did not take part in an initial assessment may check and repeat the calculations and conclusions made.

6.2 The process of risk assessment shall be documented. The amount and form of a report containing the assessment results depend on the objectives of the risk assessment performed. Recommended for including into the report (unless otherwise specified in normative and legal documents, e.g. in the documents on drawing up declarations on industrial safety) is the following:

- title page;
- list of performers with indication of their posts, academic status and organization name;
- abstract;
- table of contents;
- tasks and objectives of the risk assessment performed;
- description of the hazardous industrial object being assessed;
- assessment technique, initial assumptions and limitations, which define the range of risk assessment;
- description of the assessment procedures, models of accident processes and substantiation of their application;
- initial data and their sources, including accident rate data and reliability of equipment and technical systems \(^1\);
- results of hazards identification;
- results of risk assessment;
- analysis of the uncertainties of the risk assessment results;
- generalization of risk assessments with the most "weak" points specified;
- recommendations on risk reduction;
- conclusion;
- list of the information sources used, normative and technical, normative and legal base.

\(^1\) Depending on the analysis objectives, the technical system is regarded both as a combination of technical devices and equipment (e.g. automated process control system) and as single technical devices or their components.
ABBREVIATIONS USED IN INTERNATIONAL PRACTICE

AAV = Annulus access valve.
ABS = American Bureau of Shipping.
ADS = Atmospheric diving system.
AIV = Annulus isolation valve.
ALARP = As Low as Reasonably Practicable.
AMV = Annulus master valve.
ANSI = American National Standards Institute.
API = American Petroleum Institute.
ASV = Annulus swab valve.
AUV = Autonomous underwater vehicle.
BOP = Blowout preventer.
CAA = Civil aviation authority.
CALM = Catenary anchor leg mooring.
CRA = Corrosion-resistant alloy.
CSON = Continental shelf operations notice.
C/WO = Completion/Workover.
DFI = Design, fabrication, installation.
DHPTT = Downhole pressure/Temperature transmitter.
DIN = Deutsches Institut fur Normung.
DNV = Det Norske Veritas.
DP = Dynamic positioning.
DSV = Diving support vessel.
EDP = Emergency disconnect package.
EER = Escape, evacuation, rescue.
EPS = Emergency power supply.
ESD = Emergency shutdown.
ESP = Electrical submersible pump.
FAT = Factory acceptance test.
FEA = Fire and explosion analysis.
FMEA = Failure mode and effects analysis.
FPS = Floating production system.
FPU = Floating production unit.
GA = General alarm.
GBS = Gravity base structure.
HAZID = Hazard identification.
HAZOP = Hazard and Operability Study.
HIPS = High integrity protection system.
HP = High pressure.
HPU = Hydraulic power unit.
HVAC = Heating, ventilating and air conditioning.
HXT = Horizontal X-tree.
ID = Internal diameter.
IPU = Integrated pipeline umbilical.
ISO = International Organization for Standardization.
LCV = Level control valve.
LMRP = Lower marine riser package (for drilling).
LNG = Liquefied natural gas.
LP = Low pressure.
LPG = Liquefied petroleum gas.
LPMV = Lower production master valve.
LRFD = Load and resistance factored design.
LRP = Lower riser package (for workover).
LWI = Light well intervention.
MAWP = Maximum working pressure.
MLSS = Mudline suspension system.
MLSV = Mudline safety valve.
MODU = Mobile offshore drilling unit.
MPFM = Multiphase flowmeter.
MPP = Multiphase pump.
MWD = Measuring while drilling.
NB = Nominal bore.
NRV = Non-return valve.
OWS = Oily water separator.
PCS = Production control system.
PFD = Process flow diagram/data.
PGB = Permanent guide base.
PIV = Production isolation valve.
PLEM = Pipeline end manifold.
PLET = Pipeline end termination.
PMV = Production master valve.
PSD = Production shutdown.
PSW = Production swab valve.
PWV = Production wing valve.
QRA = Quantitative risk analysis.
QRS = Quantitative risk assessment.
ROT = Remotely operated tool.
ROV = Remotely operated vehicle.
RTJ = Ring type joint.
SALM = Single anchor leg mooring.
SAS = Safety and automation system.
SBM = Single buoy mooring.
SCM = Subsea control module.
SCSSV = Surface-controlled subsurface safety valve.
SITHP = Shut-in tubing head pressure.
SPS = Surface process shutdown.
SSIV = Subsea isolation valve.
SSP = Subsea processing.
SUDU = Subsea umbilical distribution unit.
SUT = Subsea umbilical termination.
SXT = Surface X-tree.
TB = Tubing hanger.
TFL = Through-flowline system.
TGB = Temporary guide base.
THRT = Tubing hanger running tool.
TLP = Tension leg platform.
TLQ = Temporary living quarters.
TPS = Total platform shutdown.
TRT = Tree running tool.
ULS = Ultimate limit state.
UNS = Unified numbering system.
UPMV = Upper production master valve.
UPS = Uninterrupted power supply.
VXT = Vertical X-tree.
WAT = Wax appearance temperature.
WHP = Wellhead pressure.
WOCS = Workover control system.
WOR = Workover riser.
XOV = Cross-over valve.
XT = X-tree.
APPENDIX 2

TYPICAL DIAGRAM OF OIL-AND-GAS EQUIPMENT ARRANGEMENT ON FPU
LIST OF NORMATIVE AND TECHNICAL DOCUMENTATION

<table>
<thead>
<tr>
<th>No.</th>
<th>Code name</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>123-FZ</td>
<td>Federal Law dated 22 July 2008 "Technical Regulations on Fire Safety Requirements"</td>
</tr>
<tr>
<td>4</td>
<td>TR CU 004/2011</td>
<td>Customs Union Technical Regulations "On Safety of Low-Voltage Equipment" (approved by the Customs Union Commission decision No. 768 dated 16 August 2011)</td>
</tr>
<tr>
<td>5</td>
<td>TR CU 010/2011</td>
<td>Customs Union Technical Regulations "On Safety of Mechanisms and Equipment" (approved by the Customs Union Commission decision No. 823 dated 18 October 2011)</td>
</tr>
<tr>
<td>6</td>
<td>TR CU 012/2011</td>
<td>Customs Union Technical Regulations "On Safety of Equipment for Working in Explosive Environments" (approved by the Customs Union Commission decision No. 825 dated 18 October 2011)</td>
</tr>
<tr>
<td>7</td>
<td>TR CU 019/2011</td>
<td>Customs Union Technical Regulations "On Safety of Personal Protection Equipment" (approved by the Customs Union Commission decision No. 878 dated 9 December 2011)</td>
</tr>
<tr>
<td>8</td>
<td>TR CU 020/2011</td>
<td>Customs Union Technical Regulations "On Electromagnetic Compatibility of Technical Devices" (approved by the Customs Union Commission decision No. 879 dated 9 December 2011)</td>
</tr>
<tr>
<td>9</td>
<td>TR CU 032/2013</td>
<td>Customs Union Technical Regulations "On Safety of Pressure Equipment" (adopted by the Eurasian Economic Commission resolution No. 41 dated 2 July 2013)</td>
</tr>
<tr>
<td>10</td>
<td>Federal codes and regulations in regard to industrial safety</td>
<td>General Rules for Explosion Safety of Chemical, Petrochemical, Oil-Refining Explosion-and-Fire Hazardous Facilities</td>
</tr>
<tr>
<td>11</td>
<td>Federal codes and regulations in regard to industrial safety</td>
<td>Industrial Safety Rules for Hazardous Production Facilities Using the Equipment Under Excessive Pressure</td>
</tr>
<tr>
<td>12</td>
<td>Federal codes and regulations in regard to industrial safety</td>
<td>Safety Rules for Offshore Oil and Gas Facilities</td>
</tr>
<tr>
<td>13</td>
<td>Federal codes and regulations in regard to industrial safety</td>
<td>Safety Rules in Oil and Gas Industries</td>
</tr>
<tr>
<td>14</td>
<td>Safety Guide</td>
<td>Recommendations on Design and Safe Operation of Process Pipelines</td>
</tr>
<tr>
<td>17</td>
<td>VNTP 3-85</td>
<td>Norms of process design of facilities for gathering, transport and treatment of oil, gas and water of oil field</td>
</tr>
<tr>
<td>19</td>
<td>GOST 11928-83</td>
<td>System of emergency prevention signaling and protection of automation diesel and gaseous engines. General technical requirements</td>
</tr>
<tr>
<td>20</td>
<td>GOST 12.1.003</td>
<td>Occupational safety standards system. Noise. General safety requirements</td>
</tr>
<tr>
<td>21</td>
<td>GOST 12.1.012</td>
<td>Occupational safety standards system. Vibration safety. General requirements</td>
</tr>
<tr>
<td>22</td>
<td>GOST 12.1.030-81</td>
<td>Occupational safety standards system. Electric safety. Protective conductive earth, neutralising</td>
</tr>
<tr>
<td>23</td>
<td>GOST 12.1.044-89</td>
<td>Occupational safety standards system. Fire and explosion hazard of substances and materials. Nomenclature of indices and methods of their determination</td>
</tr>
<tr>
<td>24</td>
<td>GOST 12.2.003</td>
<td>Occupational safety standards system. Industrial equipment. General safety requirements</td>
</tr>
<tr>
<td>25</td>
<td>GOST 12.2.007.0</td>
<td>Occupational safety standards system. Electrical equipment. General safety requirements</td>
</tr>
<tr>
<td>26</td>
<td>GOST 12.2.007.14</td>
<td>Occupational safety standards system. Cables and cable fittings. Safety requirements</td>
</tr>
<tr>
<td>27</td>
<td>GOST 12.2.007.6</td>
<td>Occupational safety standards system. Switching devices for voltages below 1000 V. Safety requirements</td>
</tr>
<tr>
<td>28</td>
<td>GOST 12.2.007.8</td>
<td>Occupational safety standards system. Devices for electric welding and plasma treatment. Safety requirements</td>
</tr>
<tr>
<td>29</td>
<td>GOST 12.2.032</td>
<td>Occupational safety standards system. Operator's location in a sitting position. General ergonomic requirements</td>
</tr>
<tr>
<td>Nos.</td>
<td>Code name</td>
<td>Designation</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>30</td>
<td>GOST 12.2.033</td>
<td>Occupational safety standards system. Operator's location in a standing position. General ergonomic requirements</td>
</tr>
<tr>
<td>31</td>
<td>GOST 12.4.040-78</td>
<td>Occupational safety standards system. Control elements of manufacturing equipment. Notation</td>
</tr>
<tr>
<td>32</td>
<td>GOST 12.2.062-81</td>
<td>Occupational safety standards system. Industrial equipment. Safety protectors</td>
</tr>
<tr>
<td>33</td>
<td>GOST 12.2.064</td>
<td>Occupational safety standards system. Controls of industrial equipment. General safety requirements</td>
</tr>
<tr>
<td>34</td>
<td>GOST R 52543-2006</td>
<td>Occupational safety standards system. Hydraulic drives. Safety requirements</td>
</tr>
<tr>
<td>35</td>
<td>GOST 12.2.232-2012</td>
<td>Occupational safety standards system. Surface drilling equipment. Safety requirements</td>
</tr>
<tr>
<td>36</td>
<td>GOST 12.4.026</td>
<td>Occupational safety standards system. Safety colours, safety signs and signal marking. Purpose and rules of application. General technical requirements and characteristics. Test methods (IUS 12-2016)</td>
</tr>
<tr>
<td>37</td>
<td>GOST 13862-90</td>
<td>Blow-out preventer equipment. Standard schemes, basic parameters and technical requirements for design</td>
</tr>
<tr>
<td>38</td>
<td>GOST 14254</td>
<td>Degrees of protection provided by enclosures (IP Code)</td>
</tr>
<tr>
<td>39</td>
<td>GOST 15150-69</td>
<td>Machines, instruments and other industrial products. Modifications for different climatic regions. Categories, operating, storage and transportation conditions as to environment climatic aspects influence</td>
</tr>
<tr>
<td>40</td>
<td>GOST 15150-69</td>
<td>Interstate standard. Machines, instruments and other industrial products. Modifications for different climatic regions. Categories, operating, storage and transportation conditions as to environment climatic aspects influence</td>
</tr>
<tr>
<td>41</td>
<td>GOST 16293-89 (Comecon standard 2446-88)</td>
<td>Unitized drilling rigs for development and deep exploratory drilling. Basic parameters</td>
</tr>
<tr>
<td>42</td>
<td>GOST 16853-88</td>
<td>Steel tackle ropes for operational and deep probe boring. Specifications</td>
</tr>
<tr>
<td>43</td>
<td>GOST 2.601</td>
<td>Unified system for design documentation. Exploitative documents</td>
</tr>
<tr>
<td>44</td>
<td>GOST 2.602-2013</td>
<td>Unified system for design documentation. Repair documents</td>
</tr>
<tr>
<td>45</td>
<td>GOST 23611-79</td>
<td>Electromagnetic compatibility of radio-electronic equipment. Terms and definitions</td>
</tr>
<tr>
<td>46</td>
<td>GOST 23872-79</td>
<td>Electromagnetic compatibility of radio-electronic equipment. Nomenclature of parameters and technical data classification</td>
</tr>
<tr>
<td>47</td>
<td>GOST 23941-2002</td>
<td>Noise of machines. Methods for determination of noise characteristics. General requirements</td>
</tr>
<tr>
<td>48</td>
<td>GOST 24.104-85</td>
<td>Unified system of standards of computer control systems. Computer control systems. General requirements (Sections 1 and 2). As regards Section 3, it is recommended to use GOST 34.603-92 Information technology. Types tests automated systems (Section 3)</td>
</tr>
<tr>
<td>49</td>
<td>GOST 2405-88</td>
<td>Pressure gauges, vacuum gauges, pressure-and-vacuum gauges, draught gauges and draught-and-pressure gauges. General specifications</td>
</tr>
<tr>
<td>50</td>
<td>GOST 25452</td>
<td>High-pressure rubber hoses with spiral wire reinforcement without end fittings. Specifications</td>
</tr>
<tr>
<td>51</td>
<td>GOST 28618-90</td>
<td>Rubber hoses and hose assemblies for rotary drilling and vibration applications. Specifications</td>
</tr>
<tr>
<td>52</td>
<td>GOST 30852.0-2002</td>
<td>Explosionproof electrical apparatus. Part 0. General requirements</td>
</tr>
<tr>
<td>54</td>
<td>GOST 30852.11-2002 (IEC 60079-12:1978)</td>
<td>Explosionproof electrical apparatus. Part 12. Classification of mixtures of gases or vapours with air according to their maximum experimental safe gaps and minimum igniting currents</td>
</tr>
<tr>
<td>57</td>
<td>GOST 30852.14-2002</td>
<td>Electrical apparatus for explosive gas atmospheres. Part 15. Type of protection n</td>
</tr>
<tr>
<td>58</td>
<td>GOST 32569-2013</td>
<td>Industrial steel pipe-lines. Requirements for design and operation in explosive and chemically dangerous industries</td>
</tr>
<tr>
<td>59</td>
<td>GOST R 51901.1-2002</td>
<td>Risk management. Risk analysis of technological systems</td>
</tr>
<tr>
<td>60</td>
<td>GOST R 34347-2017</td>
<td>Steel welded vessels and apparatus. General specifications</td>
</tr>
<tr>
<td>61</td>
<td>GOST 30852.15-2002</td>
<td>Electrical apparatus for explosive gas atmospheres. Part 16. Artificial ventilation for the protection of analyzer(s) houses</td>
</tr>
<tr>
<td>Nos.</td>
<td>Code name</td>
<td>Designation</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>62</td>
<td>GOST 30852.16-2002</td>
<td>Explosion-proof electrical apparatus. Part 17. Inspection and maintenance of electrical installations in hazardous areas (other than mines)</td>
</tr>
<tr>
<td>63</td>
<td>GOST 30852.17-2002</td>
<td>Explosion-proof electrical apparatus. Part 18. Type of protection (m)</td>
</tr>
<tr>
<td>64</td>
<td>GOST 30852.18-2002</td>
<td>Electrical apparatus for explosive gas atmospheres. Part 19. Repair and overhaul for apparatus used in explosive atmospheres (other than mines or explosives)</td>
</tr>
<tr>
<td>65</td>
<td>GOST 30852.19-2002</td>
<td>Electrical apparatus for explosive gas atmospheres. Part 20. Data for flammable gases and vapours, relating to the use of electrical apparatus</td>
</tr>
<tr>
<td>67</td>
<td>GOST 30852.3-2002</td>
<td>Explosion-proof electrical equipment. Part 2. Filling or purging of the pressurized enclosure "p"</td>
</tr>
<tr>
<td>68</td>
<td>GOST 30852.4-2002</td>
<td>Electrical apparatus for explosive gas atmospheres. Part 3. Spark-test apparatus for intrinsically-safe circuits</td>
</tr>
<tr>
<td>69</td>
<td>GOST 30852.5-2002</td>
<td>Explosion protected electrical apparatus. Part 4. Method of test for ignition temperature</td>
</tr>
<tr>
<td>70</td>
<td>GOST 30852.6-2002</td>
<td>Electrical apparatus for explosive gas atmospheres. Part 5. Powder filling</td>
</tr>
<tr>
<td>71</td>
<td>GOST 30852.7-2002</td>
<td>Explosion-proof electrical apparatus. Part 6. Oil-filled enclosures "o"</td>
</tr>
<tr>
<td>72</td>
<td>GOST 30852.8-2002</td>
<td>Explosion-proof electrical apparatus. Part 7: Type of protection e</td>
</tr>
<tr>
<td>73</td>
<td>GOST 30852.9-2002</td>
<td>Electrical apparatus for explosive gas atmospheres. Part 10. Classification of hazardous areas</td>
</tr>
<tr>
<td>74</td>
<td>GOST 6286-2017</td>
<td>High-pressure rubber hoses with metal braids without end fittings. Specifications</td>
</tr>
<tr>
<td>75</td>
<td>GOST R 12.4.026-2015</td>
<td>Occupational safety standards system. Safety colours, safety signs and signal marking. Purpose and rules of application. General technical requirements and characteristics. Test methods</td>
</tr>
<tr>
<td>76</td>
<td>GOST R 51321.1-2007</td>
<td>Low-voltage switchgear and controlgear assemblies. Part 1. Type-tested and partially type-tested assemblies. General technical requirements and test methods</td>
</tr>
<tr>
<td>78</td>
<td>GOST R 52543-2006</td>
<td>Hydraulic drives. Safety requirements</td>
</tr>
<tr>
<td>79</td>
<td>GOST R 52869-2007</td>
<td>Pneumatic drives. Safety requirements</td>
</tr>
<tr>
<td>80</td>
<td>GOST R 9544-2015</td>
<td>Pipeline valves. Leakage rates of valves</td>
</tr>
<tr>
<td>81</td>
<td>GOST R 55311-2012</td>
<td>Petroleum and natural gas industries. Offshore oil and gas field structures. Terms and definitions</td>
</tr>
<tr>
<td>84</td>
<td>GOST R ISO 3744-2013</td>
<td>Acoustics. Determination of sound power levels and sound energy levels of noise sources using sound pressure. Engineering method for an essentially free field over a reflecting plane</td>
</tr>
<tr>
<td>85</td>
<td>GOST R ISO 3746-2013</td>
<td>Acoustics. Determination of sound power levels and sound energy levels of noise sources using sound pressure. Survey methods using an enveloping measurement surface over a reflecting plane</td>
</tr>
<tr>
<td>86</td>
<td>OST 26.260.18-2004</td>
<td>Technological units of gas and oil industry. General technical requirements</td>
</tr>
<tr>
<td>87</td>
<td>API RP 2A-WSD</td>
<td>Planning, Designing, and Constructing Fixed Offshore Platforms — Working Stress Design</td>
</tr>
<tr>
<td>88</td>
<td>API Spec 2C</td>
<td>Offshore Pedestal-mounted Cranes</td>
</tr>
<tr>
<td>89</td>
<td>API Spec 4F</td>
<td>Specification for Drilling and Well Servicing Structures</td>
</tr>
<tr>
<td>90</td>
<td>API RP 4G</td>
<td>Operation, Inspection, Maintenance, and Repair of Drilling and Well Servicing Structures</td>
</tr>
<tr>
<td>91</td>
<td>API Spec 6A</td>
<td>Specification for Wellhead and Tree Equipment</td>
</tr>
<tr>
<td>92</td>
<td>API Spec 6D</td>
<td>Specification for Pipeline and Piping Valves</td>
</tr>
<tr>
<td>93</td>
<td>API Std 6FA</td>
<td>Standard for Fire Test for Valves</td>
</tr>
<tr>
<td>94</td>
<td>API Spec 6FD</td>
<td>Specification for Fire Test for Check Valves</td>
</tr>
<tr>
<td>95</td>
<td>API RP 7G/ ISO 10407</td>
<td>Recommended Practice for Drill Stem Design and Operating Limits</td>
</tr>
<tr>
<td>Nos.</td>
<td>Code name</td>
<td>Designation</td>
</tr>
<tr>
<td>------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>96</td>
<td>API Spec 7K</td>
<td>Drilling and Well Servicing Equipment</td>
</tr>
<tr>
<td>97</td>
<td>API RP 7L</td>
<td>Procedures for Inspection, Maintenance, Repair, and Remanufacture of Drilling Equipment</td>
</tr>
<tr>
<td>98</td>
<td>API RP 8B</td>
<td>Recommended Practice for Procedures for Inspection, Maintenance, Repair, and Remanufacture of Hoisting Equipment</td>
</tr>
<tr>
<td>99</td>
<td>API Spec 8C</td>
<td>Drilling and Production Hoisting Equipment (PSL 1 and PSL 2)</td>
</tr>
<tr>
<td>100</td>
<td>API Spec 9A</td>
<td>Specification for Wire Rope</td>
</tr>
<tr>
<td>101</td>
<td>API RP 9B</td>
<td>Application, Care, and Use of Wire Rope for Oil Field Service</td>
</tr>
<tr>
<td>102</td>
<td>API Spec 12D</td>
<td>Specification for Field Welded Tanks for Storage of Production Liquids</td>
</tr>
<tr>
<td>103</td>
<td>API Spec 12F</td>
<td>Specification for Shop Welded Tanks for Storage of Production Liquids</td>
</tr>
<tr>
<td>104</td>
<td>API Spec 12J</td>
<td>Specification for Oil and Gas Separators</td>
</tr>
<tr>
<td>105</td>
<td>API RP 14B</td>
<td>Design, Installation, Repair and Operation of Subsurface Safety Valve Systems</td>
</tr>
<tr>
<td>106</td>
<td>API RP 14C</td>
<td>Recommended Practice for Analysis, Design, Installation, and Testing of Basic Safety Systems for Offshore Production Platforms</td>
</tr>
<tr>
<td>107</td>
<td>API RP 14E</td>
<td>Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems</td>
</tr>
<tr>
<td>108</td>
<td>API RP 14H</td>
<td>Recommended Practice for Installation, Maintenance and Repair of Surface Safety Valves and Underwater Safety Valves Offshore</td>
</tr>
<tr>
<td>109</td>
<td>API RP 14J</td>
<td>Recommended Practice for Design and Hazards Analysis for Offshore Production Facilities</td>
</tr>
<tr>
<td>110</td>
<td>API Spec 16A</td>
<td>Specification for Drill-Through Equipment</td>
</tr>
<tr>
<td>111</td>
<td>API Spec 16C</td>
<td>Choke and Kill Equipment</td>
</tr>
<tr>
<td>112</td>
<td>API Spec 16D</td>
<td>Specification for Control Systems for Drilling Well Control Equipment and Control Systems for Diverter Equipment</td>
</tr>
<tr>
<td>113</td>
<td>API Spec 16F</td>
<td>Specification for Marine Drilling Riser Equipment</td>
</tr>
<tr>
<td>114</td>
<td>API Bul 16J</td>
<td>Bulletin on Comparison of Marine Drilling Riser Analyses</td>
</tr>
<tr>
<td>115</td>
<td>API RP 16Q</td>
<td>Design, Selection, Operation, and Maintenance of Marine Drilling Riser Systems</td>
</tr>
<tr>
<td>116</td>
<td>API RP 17A</td>
<td>Design and Operation of Subsea Production Systems</td>
</tr>
<tr>
<td>117</td>
<td>API RP 17B</td>
<td>Recommended Practice for Flexible Pipe</td>
</tr>
<tr>
<td>118</td>
<td>API Std 53</td>
<td>Well Control Equipment Systems for Drilling Wells</td>
</tr>
<tr>
<td>119</td>
<td>API RP 64</td>
<td>Diverter Equipment Systems</td>
</tr>
<tr>
<td>120</td>
<td>API RP 500</td>
<td>Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classed as Class I, Division 1 and Division 2</td>
</tr>
<tr>
<td>121</td>
<td>API RP 505</td>
<td>Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Zone 0, Zone 1, and Zone 2</td>
</tr>
<tr>
<td>122</td>
<td>API RP 520-1</td>
<td>Sizing, Selection, and Installation of Pressure-Relieving Devices in Refineries; Part 1 — Sizing and Selection</td>
</tr>
<tr>
<td>123</td>
<td>API RP 520-2</td>
<td>Sizing, Selection, and Installation of Pressure-Relieving Devices in Refineries; Part 2 — Installation</td>
</tr>
<tr>
<td>124</td>
<td>API RP 521</td>
<td>Pressure-relieving and Depressuring Systems</td>
</tr>
<tr>
<td>125</td>
<td>API Std 2000 (R2020)</td>
<td>Venting Atmospheric and Low-pressure Storage Tanks</td>
</tr>
<tr>
<td>126</td>
<td>API Std 530</td>
<td>Calculation of Heater-tube Thickness in Petroleum Refineries</td>
</tr>
<tr>
<td>127</td>
<td>API Std 610</td>
<td>Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries</td>
</tr>
<tr>
<td>128</td>
<td>API Std 611</td>
<td>General Purpose Steam Turbines for Petroleum, Chemical, and Gas Industry Services</td>
</tr>
<tr>
<td>129</td>
<td>API Std 612</td>
<td>Petroleum, Petrochemical, and Natural Gas Industries — Steam Turbines — Special-Purpose Applications</td>
</tr>
<tr>
<td>130</td>
<td>API Std 613</td>
<td>Special Purpose Gear Units for Petroleum, Chemical and Gas Industry Services</td>
</tr>
<tr>
<td>Nos.</td>
<td>Code name</td>
<td>Designation</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>131</td>
<td>API Std 614</td>
<td>Lubrication, Shaft-Sealing, and Oil-Control Systems and Auxiliaries</td>
</tr>
<tr>
<td>132</td>
<td>API Std 616</td>
<td>Gas Turbines for the Petroleum, Chemical, and Gas Industry Services</td>
</tr>
<tr>
<td>133</td>
<td>API Std 617</td>
<td>Axial and Centrifugal Compressors and Expander-Compressors</td>
</tr>
<tr>
<td>134</td>
<td>API Std 618</td>
<td>Reciprocating Compressors for Petroleum, Chemical, and Gas Industry Services</td>
</tr>
<tr>
<td>135</td>
<td>API Std 619</td>
<td>Rotary-Type Positive Displacement Compressors for Petroleum, Chemical and Natural Gas Industries</td>
</tr>
<tr>
<td>136</td>
<td>API Std 620</td>
<td>Design and Construction of Large, Welded, Low-Pressure Storage Tanks</td>
</tr>
<tr>
<td>137</td>
<td>API Std 650</td>
<td>Welded Tanks for Oil Storage</td>
</tr>
<tr>
<td>138</td>
<td>API Std 660</td>
<td>Shell-and-Tube Heat Exchangers</td>
</tr>
<tr>
<td>139</td>
<td>API Std 661</td>
<td>Petroleum, Petrochemical, and Natural Gas Industries — Air-Cooled Heat Exchangers</td>
</tr>
<tr>
<td>140</td>
<td>API Std 671</td>
<td>Special Purpose Couplings for Petroleum, Chemical and Gas Industry Services</td>
</tr>
<tr>
<td>141</td>
<td>API Std 672</td>
<td>Packaged, Integrally Geared Centrifugal Air Compressors for Petroleum, Chemical, and Gas Industry Services</td>
</tr>
<tr>
<td>142</td>
<td>API Std 674</td>
<td>Positive Displacement Pumps — Reciprocating</td>
</tr>
<tr>
<td>143</td>
<td>API Std 675</td>
<td>Positive Displacement Pumps — Controlled Volume for Petroleum, Chemical, and Gas Industry Services</td>
</tr>
<tr>
<td>144</td>
<td>API Std 676</td>
<td>Positive Displacement Pumps — Rotary</td>
</tr>
<tr>
<td>145</td>
<td>API Std 2000 (R2020)</td>
<td>Venting Atmospheric and Low-Pressure Storage Tanks</td>
</tr>
<tr>
<td>146</td>
<td>ASME B1.20.1</td>
<td>Pipe Threads, General Purpose (Inch)</td>
</tr>
<tr>
<td>147</td>
<td>ASME B16.5</td>
<td>Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard</td>
</tr>
<tr>
<td>148</td>
<td>ASME B16.5a</td>
<td>Addenda to ASME B16.5-1996 Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24</td>
</tr>
<tr>
<td>149</td>
<td>ASME B16.10</td>
<td>Face-to-Face and End-to-End Dimensions of Valves</td>
</tr>
<tr>
<td>150</td>
<td>ASME B31.1</td>
<td>Power Piping Design & Fabrication</td>
</tr>
<tr>
<td>151</td>
<td>ANSI/ASME B31.3</td>
<td>Process Piping</td>
</tr>
<tr>
<td>152</td>
<td>ASME B31.4</td>
<td>Pipeline Transportation Systems for Liquids and Slurries</td>
</tr>
<tr>
<td>153</td>
<td>ASME B31.8</td>
<td>Gas Transmission & Distribution Piping Systems</td>
</tr>
<tr>
<td>154</td>
<td>ASME B73.1</td>
<td>Specification for Horizontal End Suction Centrifugal Pumps for Chemical Process</td>
</tr>
<tr>
<td>155</td>
<td>ASME B73.2</td>
<td>Specification for Vertical In-Line Centrifugal Pumps for Chemical Process</td>
</tr>
<tr>
<td>156</td>
<td>ASME BPVC Section I</td>
<td>BPVC Section I — Rules for Construction of Power Boilers</td>
</tr>
<tr>
<td>157</td>
<td>ASME BPVC Section IV</td>
<td>BPVC Section IV — Rules for Construction of Heating Boilers</td>
</tr>
<tr>
<td>158</td>
<td>ASME BPVC Section VIII</td>
<td>BPVC Section VIII — Rules for Construction of Pressure Vessels</td>
</tr>
<tr>
<td>159</td>
<td>ASME PTC 22</td>
<td>PTC 22 — Gas Turbines</td>
</tr>
<tr>
<td>160</td>
<td>ASTM 193</td>
<td>Standard Specification for Alloy-Steel and Stainless Steel Bolting for High Temperature or High Pressure Service and Other Special Purpose Applications</td>
</tr>
<tr>
<td>161</td>
<td>ASTM A435</td>
<td>Standard Specification for Straight-Beam Ultrasonic Examination of Steel Plates</td>
</tr>
<tr>
<td>162</td>
<td>ASTM A6M</td>
<td>Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling</td>
</tr>
<tr>
<td>163</td>
<td>ASTM A770</td>
<td>Standard Specification for Through-Thickness Tension Testing of Steel Plates for Special Applications</td>
</tr>
<tr>
<td>164</td>
<td>ASTM A923</td>
<td>Standard Test Methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic/Ferritic Stainless Steels</td>
</tr>
<tr>
<td>165</td>
<td>ASTM E208</td>
<td>Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels</td>
</tr>
<tr>
<td>167</td>
<td>AWSD1.1</td>
<td>Structural Welding — Steel, 2002</td>
</tr>
<tr>
<td>168</td>
<td>BS 1113</td>
<td>Specification for design and manufacture of water-tube steam generating plant (including superheaters, reheaters and steel tube economizers)</td>
</tr>
<tr>
<td>Nos.</td>
<td>Code name</td>
<td>Designation</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>169</td>
<td>BS 2790</td>
<td>Specification for design and manufacture of shell boilers of welded construction</td>
</tr>
<tr>
<td>170</td>
<td>BS 5045</td>
<td>Transportable gas containers</td>
</tr>
<tr>
<td>171</td>
<td>BSI PD 5500</td>
<td>Specification for unfired fusion welded pressure vessels</td>
</tr>
<tr>
<td>172</td>
<td>DNV-RP-A201</td>
<td>Plan Approval Documentation Types — Definitions</td>
</tr>
<tr>
<td>173</td>
<td>DNV-RP-D101</td>
<td>Structural analysis of piping systems</td>
</tr>
<tr>
<td>174</td>
<td>DNV-RP-O501</td>
<td>Erosive Wear in Piping Systems</td>
</tr>
<tr>
<td>175</td>
<td>EN 1473</td>
<td>Installation and equipment for liquefied natural gas. Design of onshore installations</td>
</tr>
<tr>
<td>176</td>
<td>EN 1474</td>
<td>Installation and equipment for liquefied natural gas. Design and testing of loading/unloading arms</td>
</tr>
<tr>
<td>177</td>
<td>EN 1834, Part 1 — 3</td>
<td>Reciprocating internal combustion engines. Safety requirements for design and construction of engines for use in potentially explosive atmospheres</td>
</tr>
<tr>
<td>178</td>
<td>EN 1993, several parts</td>
<td>Eurocode 3: Design of steel structures</td>
</tr>
<tr>
<td>179</td>
<td>EN 1999 Part 1 — 1 to 1 — 4</td>
<td>Eurocode 9: Design of aluminium structures</td>
</tr>
<tr>
<td>180</td>
<td>EN 10204</td>
<td>Metallic products — Types of inspection documents</td>
</tr>
<tr>
<td>181</td>
<td>EN 12952</td>
<td>Water-tube boilers and auxiliary installations</td>
</tr>
<tr>
<td>182</td>
<td>EN 12953</td>
<td>Shell boilers</td>
</tr>
<tr>
<td>183</td>
<td>EN 13445</td>
<td>Unfired pressure vessels</td>
</tr>
<tr>
<td>184</td>
<td>EN 13480</td>
<td>Metallic industrial piping</td>
</tr>
<tr>
<td>185</td>
<td>EN 14015</td>
<td>Specification for the design and manufacture of site built, vertical, cylindrical, flat-bottomed, above ground, welded, steel tanks for the storage of liquids at ambient temperature and above</td>
</tr>
<tr>
<td>186</td>
<td>EN 14620, several parts</td>
<td>Design and manufacture of site built, vertical, cylindrical, flat-bottomed steel tanks for the storage of refrigerated, liquefied gases with operating temperatures between 0 °C and −165 °C</td>
</tr>
<tr>
<td>187</td>
<td>FEM</td>
<td>Rules for the Design of Hoisting Appliances</td>
</tr>
<tr>
<td>188</td>
<td>ICS/OCIMF</td>
<td>Ship to Ship Transfer Guide (Petroleum)</td>
</tr>
<tr>
<td>189</td>
<td>IEC 60079-2</td>
<td>Explosive atmospheres — Part 2: Equipment protection by pressurized enclosure "p"</td>
</tr>
<tr>
<td>190</td>
<td>IEC 60092-504</td>
<td>Electrical installations in ships — Part 504: Automation, control and instrumentation</td>
</tr>
<tr>
<td>191</td>
<td>IEC 60529</td>
<td>Degrees of protection provided by enclosures (IP Code)</td>
</tr>
<tr>
<td>192</td>
<td>IEC 60533</td>
<td>Electrical and electronic installations in ships — Electromagnetic compatibility (EMC) — Ships with a metallic hull</td>
</tr>
<tr>
<td>193</td>
<td>IEC 60945</td>
<td>Maritime navigation and radiocommunication equipment and systems — General requirements — Methods of testing and required test results</td>
</tr>
<tr>
<td>194</td>
<td>IGC Code</td>
<td>International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk</td>
</tr>
<tr>
<td>195</td>
<td>IP 15</td>
<td>Area Classification Code for Petroleum Installations</td>
</tr>
<tr>
<td>196</td>
<td>ISO 898</td>
<td>Mechanical properties of fasteners made of carbon steel and alloy steel</td>
</tr>
<tr>
<td>197</td>
<td>ISO 898-1</td>
<td>Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and studs with specified property classes — Coarse thread and fine pitch thread</td>
</tr>
<tr>
<td>198</td>
<td>ISO 898-2</td>
<td>Mechanical properties of fasteners made of carbon steel and alloy steel — Part 2: Nuts with specified property classes — Coarse thread and fine pitch thread</td>
</tr>
<tr>
<td>199</td>
<td>ISO 2314</td>
<td>Gas turbines — Acceptance tests</td>
</tr>
<tr>
<td>200</td>
<td>ISO 3046-1</td>
<td>Reciprocating internal combustion engines — Performance — Part 1: Declarations of power, fuel and lubricating oil consumptions, and test methods — Additional requirements for engines for general use</td>
</tr>
<tr>
<td>201</td>
<td>ISO 3183</td>
<td>Petroleum and natural gas industries — Steel pipe for pipeline transportation systems</td>
</tr>
<tr>
<td>202</td>
<td>ISO 3977-5</td>
<td>Gas turbines — Procurement — Part 5: Applications for petroleum and natural gas industries</td>
</tr>
<tr>
<td>Nos.</td>
<td>Code name</td>
<td>Designation</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>203</td>
<td>ISO 6336-1</td>
<td>Calculation of load capacity of spur and helical gears — Part 1: Basic principles, introduction and general influence factors</td>
</tr>
<tr>
<td>204</td>
<td>ISO 9001:2008</td>
<td>Quality management systems — Requirements</td>
</tr>
<tr>
<td>205</td>
<td>ISO 9004:2000</td>
<td>Quality management systems — Guidelines for performance improvements</td>
</tr>
<tr>
<td>206</td>
<td>ISO/TR10400</td>
<td>Petroleum and natural gas industries — Formulae and calculations for the properties of casing, tubing, drill pipe and line pipe used as casing or tubing</td>
</tr>
<tr>
<td>207</td>
<td>ISO 10405</td>
<td>Petroleum and natural gas industries — Care and use of casing and tubing</td>
</tr>
<tr>
<td>208</td>
<td>ISO 10407-1</td>
<td>Petroleum and natural gas industries — Drilling and production equipment — Part 1: Drill stem design and operating limits</td>
</tr>
<tr>
<td>209</td>
<td>ISO 10407-2</td>
<td>Petroleum and natural gas industries — Rotary drilling equipment — Part 2: Inspection and classification of used drill stem elements</td>
</tr>
<tr>
<td>210</td>
<td>ISO 10414-1</td>
<td>Petroleum and natural gas industries — Field testing of drilling fluids — Part 1: Water-based fluids</td>
</tr>
<tr>
<td>211</td>
<td>ISO 10414-2</td>
<td>Petroleum and natural gas industries — Field testing of drilling fluids — Part 2: Oil-based fluids</td>
</tr>
<tr>
<td>212</td>
<td>ISO 10416</td>
<td>Petroleum and natural gas industries — Drilling fluids — Laboratory testing</td>
</tr>
<tr>
<td>213</td>
<td>ISO 10417</td>
<td>Petroleum and natural gas industries — Subsurface safety valve systems — Design, installation, operation and redress</td>
</tr>
<tr>
<td>214</td>
<td>ISO 10418</td>
<td>Petroleum and natural gas industries — Offshore production installations — Process safety systems</td>
</tr>
<tr>
<td>215</td>
<td>ISO 10423</td>
<td>Petroleum and natural gas industries — Drilling and production equipment — Wellhead and christmas tree equipment</td>
</tr>
<tr>
<td>216</td>
<td>ISO 10424-1</td>
<td>Petroleum and natural gas industries — Rotary drilling equipment — Part 1: Rotary drill stem elements</td>
</tr>
<tr>
<td>217</td>
<td>ISO 10424-2</td>
<td>Petroleum and natural gas industries — Rotary drilling equipment — Part 2: Threading and gauging of rotary shouldered thread connections</td>
</tr>
<tr>
<td>218</td>
<td>ISO 10426-1</td>
<td>Petroleum and natural gas industries — Cements and materials for well cementing — Part 1: Specification</td>
</tr>
<tr>
<td>219</td>
<td>ISO 10426-2</td>
<td>Petroleum and natural gas industries — Cements and materials for well cementing — Part 2: Testing of well cements</td>
</tr>
<tr>
<td>220</td>
<td>ISO 10426-3</td>
<td>Petroleum and natural gas industries — Cements and materials for well cementing — Part 3: Testing of deepwater well cement formulations</td>
</tr>
<tr>
<td>221</td>
<td>ISO 10426-4</td>
<td>Petroleum and natural gas industries — Cements and materials for well cementing — Part 4: Preparation and testing of foamed cement slurries at atmospheric pressure</td>
</tr>
<tr>
<td>222</td>
<td>ISO 10426-5</td>
<td>Petroleum and natural gas industries — Cements and materials for well cementing — Part 5: Determination of shrinkage and expansion of well cement formulations at atmospheric pressure</td>
</tr>
<tr>
<td>223</td>
<td>ISO 10426-6</td>
<td>Petroleum and natural gas industries — Cements and materials for well cementing — Part 6: Methods for determining the static gel strength of cement formulations</td>
</tr>
<tr>
<td>224</td>
<td>ISO 10427-1</td>
<td>Petroleum and natural gas industries — Equipment for well cementing — Part 1: Casing bow-spring centralizers</td>
</tr>
<tr>
<td>225</td>
<td>ISO 10427-2</td>
<td>Petroleum and natural gas industries — Equipment for well cementing — Part 2: Centralizer placement and stop-collar testing</td>
</tr>
<tr>
<td>226</td>
<td>ISO 10427-3</td>
<td>Petroleum and natural gas industries — Equipment for well cementing — Part 3: Performance testing of cementing float equipment</td>
</tr>
<tr>
<td>227</td>
<td>ISO 10428</td>
<td>Petroleum and natural gas industries — Sucker rods (pony rods, polished rods, couplings and sub-couplings) — Specification</td>
</tr>
<tr>
<td>228</td>
<td>ISO 10431</td>
<td>Petroleum and natural gas industries — Pumping units — Specification</td>
</tr>
<tr>
<td>229</td>
<td>ISO 10432</td>
<td>Petroleum and natural gas industries — Downhole equipment — Subsurface safety valve equipment</td>
</tr>
<tr>
<td>230</td>
<td>ISO 10434</td>
<td>Bolted bonnet steel gate valves for the petroleum, petrochemical and allied industries</td>
</tr>
<tr>
<td>231</td>
<td>ISO 10437</td>
<td>Petroleum, petrochemical and natural gas industries — Steam turbines — Special-purpose applications</td>
</tr>
<tr>
<td>232</td>
<td>ISO 10438-1</td>
<td>Petroleum, petrochemical and natural gas industries — Lubrication, shaft-sealing and control-oil systems and auxiliaries — Part 1: General requirements</td>
</tr>
<tr>
<td>233</td>
<td>ISO 10438-2</td>
<td>Petroleum, petrochemical and natural gas industries — Lubrication, shaft-sealing and control-oil systems and auxiliaries — Part 2: Special-purpose oil systems</td>
</tr>
<tr>
<td>234</td>
<td>ISO 10438-3</td>
<td>Petroleum, petrochemical and natural gas industries — Lubrication, shaft-sealing and control-oil systems and auxiliaries — Part 3: General-purpose oil systems</td>
</tr>
<tr>
<td>Nos.</td>
<td>Code name</td>
<td>Designation</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>235</td>
<td>ISO 10438-4</td>
<td>Petroleum, petrochemical and natural gas industries — Lubrication, shaft-sealing and control-oil systems and auxiliaries — Part 4: Self-acting gas seal support systems</td>
</tr>
<tr>
<td>236</td>
<td>ISO 10439-1</td>
<td>Petroleum, petrochemical and natural gas industries — Axial and centrifugal compressors and expander-compressors — Part 1: General requirements</td>
</tr>
<tr>
<td>238</td>
<td>ISO 10439-3</td>
<td>Petroleum, petrochemical and natural gas industries — Axial and centrifugal compressors and expander-compressors — Part 3: Integrally geared centrifugal compressors</td>
</tr>
<tr>
<td>239</td>
<td>ISO 10439-4</td>
<td>Petroleum, petrochemical and natural gas industries — Axial and centrifugal compressors and expander-compressors — Part 4: Expander-compressors</td>
</tr>
<tr>
<td>241</td>
<td>ISO 10440-2</td>
<td>Petroleum and natural gas industries — Rotary-type positive-displacement compressors — Part 2: Packaged air compressors (oil-free)</td>
</tr>
<tr>
<td>242</td>
<td>ISO 10441</td>
<td>Petroleum, petrochemical and natural gas industries — Flexible couplings for mechanical power transmission — Special-purpose applications</td>
</tr>
<tr>
<td>243</td>
<td>ISO 10442</td>
<td>Petroleum, chemical and gas service industries — Packaged, integrally geared centrifugal air compressors</td>
</tr>
<tr>
<td>244</td>
<td>ISO 10474</td>
<td>Steel and steel products — Inspection documents</td>
</tr>
<tr>
<td>245</td>
<td>ISO 11960</td>
<td>Petroleum and natural gas industries — Steel pipes for use as casing or tubing for wells</td>
</tr>
<tr>
<td>246</td>
<td>ISO 11961</td>
<td>Petroleum and natural gas industries — Steel drill pipe</td>
</tr>
<tr>
<td>247</td>
<td>ISO 12211</td>
<td>Petroleum, petrochemical and natural gas industries — Spiral plate heat exchangers</td>
</tr>
<tr>
<td>248</td>
<td>ISO 12212</td>
<td>Petroleum, petrochemical and natural gas industries — Hairpin-type heat exchangers</td>
</tr>
<tr>
<td>249</td>
<td>ISO/TR 12489</td>
<td>Petroleum, petrochemical and natural gas industries — Reliability modelling and calculation of safety systems</td>
</tr>
<tr>
<td>250</td>
<td>ISO 12490</td>
<td>Petroleum and natural gas industries — Mechanical integrity and sizing of actuators and mounting kits for pipeline valves</td>
</tr>
<tr>
<td>251</td>
<td>ISO 12736</td>
<td>Petroleum and natural gas industries — Wet thermal insulation coatings for pipelines, flow lines, equipment and subsea structures</td>
</tr>
<tr>
<td>252</td>
<td>ISO/TS 12747</td>
<td>Petroleum and natural gas industries — Pipeline transportation systems – Recommended practice for pipeline life extension</td>
</tr>
<tr>
<td>253</td>
<td>ISO 12835</td>
<td>Qualification of casing connections for thermal wells</td>
</tr>
<tr>
<td>254</td>
<td>ISO 13085</td>
<td>Petroleum and natural gas industries — Aluminium alloy pipe for use as tubing for wells</td>
</tr>
<tr>
<td>255</td>
<td>ISO 13354</td>
<td>Petroleum and natural gas industries — Drilling and production equipment – Shallow gas diverter equipment</td>
</tr>
<tr>
<td>256</td>
<td>ISO 13500</td>
<td>Petroleum and natural gas industries — Drilling fluid materials – Specifications and tests</td>
</tr>
<tr>
<td>257</td>
<td>ISO 13501</td>
<td>Petroleum and natural gas industries — Drilling fluids – Processing equipment evaluation</td>
</tr>
<tr>
<td>258</td>
<td>ISO 13503-1</td>
<td>Petroleum and natural gas industries — Completion fluids and materials – Part 1: Measurement of viscous properties of completion fluids</td>
</tr>
<tr>
<td>259</td>
<td>ISO 13503-2</td>
<td>Petroleum and natural gas industries — Completion fluids and materials – Part 2: Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations</td>
</tr>
<tr>
<td>260</td>
<td>ISO 13503-3</td>
<td>Petroleum and natural gas industries — Completion fluids and materials – Part 3: Testing of heavy brines</td>
</tr>
<tr>
<td>261</td>
<td>ISO 13503-4</td>
<td>Petroleum and natural gas industries — Completion fluids and materials – Part 4: Procedure for measuring stimulation and gravel-pack fluid leakoff under static conditions</td>
</tr>
<tr>
<td>262</td>
<td>ISO 13503-5</td>
<td>Petroleum and natural gas industries — Completion fluids and materials – Part 5: Procedures for measuring the long-term conductivity of proppants</td>
</tr>
<tr>
<td>263</td>
<td>ISO 13503-6</td>
<td>Petroleum and natural gas industries — Completion fluids and materials – Part 6: Procedure for measuring leakoff of completion fluids under dynamic conditions</td>
</tr>
<tr>
<td>264</td>
<td>ISO 13533</td>
<td>Petroleum and natural gas industries — Drilling and production equipment – Drill-through equipment</td>
</tr>
<tr>
<td>265</td>
<td>ISO 13534</td>
<td>Petroleum and natural gas industries — Drilling and production equipment – Inspection, maintenance, repair and remanufacture of hoisting equipment</td>
</tr>
<tr>
<td>266</td>
<td>ISO 13535</td>
<td>Petroleum and natural gas industries — Drilling and production equipment – Hoisting equipment</td>
</tr>
<tr>
<td>Nos.</td>
<td>Code name</td>
<td>Designation</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>267</td>
<td>ISO 13623</td>
<td>Petroleum and natural gas industries — Pipeline transportation systems</td>
</tr>
<tr>
<td>268</td>
<td>ISO 13624-1</td>
<td>Petroleum and natural gas industries — Drilling and production equipment — Part 1: Design and operation of marine drilling riser equipment</td>
</tr>
<tr>
<td>269</td>
<td>ISO/TR 13624-2</td>
<td>Petroleum and natural gas industries — Drilling and production equipment — Part 2: Deepwater drilling riser methodologies, operations, and integrity technical report</td>
</tr>
<tr>
<td>270</td>
<td>ISO 13625</td>
<td>Petroleum and natural gas industries — Drilling and production equipment — Marine drilling riser couplings</td>
</tr>
<tr>
<td>271</td>
<td>ISO 13626</td>
<td>Petroleum and natural gas industries — Drilling and production equipment — Drilling and well servicing structures</td>
</tr>
<tr>
<td>272</td>
<td>ISO 13631</td>
<td>Petroleum and natural gas industries — Packaged reciprocating gas compressors</td>
</tr>
<tr>
<td>273</td>
<td>ISO 13678</td>
<td>Petroleum and natural gas industries — Evaluation and testing of thread compounds for use with casing, tubing, line pipe and drill stem elements</td>
</tr>
<tr>
<td>274</td>
<td>ISO 13679</td>
<td>Petroleum and natural gas industries — Procedures for testing casing and tubing connections</td>
</tr>
<tr>
<td>275</td>
<td>ISO 13680</td>
<td>Petroleum and natural gas industries — Corrosion-resistant alloy seamless tubes for use as casing, tubing, coupling stock and accessory material — Delivery conditions</td>
</tr>
<tr>
<td>276</td>
<td>ISO 13691</td>
<td>Petroleum and natural gas industries — High-speed special-purpose gear units</td>
</tr>
<tr>
<td>277</td>
<td>ISO 13702</td>
<td>Petroleum and natural gas industries — Control and mitigation of fires and explosions on offshore production installations — Requirements and guidelines</td>
</tr>
<tr>
<td>278</td>
<td>ISO 13703</td>
<td>Petroleum and natural gas industries — Design and installation of piping systems on offshore production platforms</td>
</tr>
<tr>
<td>279</td>
<td>ISO 13704</td>
<td>Petroleum, petrochemical and natural gas industries — Calculation of heater-tube thickness in petroleum refineries</td>
</tr>
<tr>
<td>280</td>
<td>ISO 13705</td>
<td>Petroleum, petrochemical and natural gas industries — Fired heaters for general refinery service</td>
</tr>
<tr>
<td>281</td>
<td>ISO 13706</td>
<td>Petroleum, petrochemical and natural gas industries — Air-cooled heat exchangers</td>
</tr>
<tr>
<td>282</td>
<td>ISO 13707</td>
<td>Petroleum and natural gas industries — Reciprocating compressors</td>
</tr>
<tr>
<td>283</td>
<td>ISO 13709</td>
<td>Centrifugal pumps for petroleum, petrochemical and natural gas industries</td>
</tr>
<tr>
<td>284</td>
<td>ISO 13710</td>
<td>Petroleum, petrochemical and natural gas industries — Reciprocating positive displacement pumps</td>
</tr>
<tr>
<td>285</td>
<td>ISO 13847</td>
<td>Petroleum and natural gas industries — Pipeline transportation systems — Welding of pipelines</td>
</tr>
<tr>
<td>286</td>
<td>ISO 14001</td>
<td>Environmental management systems — Requirements with guidance for use</td>
</tr>
<tr>
<td>287</td>
<td>ISO 14224</td>
<td>Petroleum, petrochemical and natural gas industries — Collection and exchange of reliability and maintenance data for equipment</td>
</tr>
<tr>
<td>288</td>
<td>ISO 14310</td>
<td>Petroleum and natural gas industries — Downhole equipment — Packers and bridge plugs</td>
</tr>
<tr>
<td>289</td>
<td>ISO 14313</td>
<td>Petroleum and natural gas industries — Pipeline transportation systems — Pipeline valves</td>
</tr>
<tr>
<td>290</td>
<td>ISO 14691</td>
<td>Petroleum, petrochemical and natural gas industries — Flexible couplings for mechanical power transmission — General-purpose applications</td>
</tr>
<tr>
<td>291</td>
<td>ISO 14692-1</td>
<td>Petroleum and natural gas industries — Glass-reinforced plastics (GRP) piping — Part 1: Vocabulary, symbols, applications and materials</td>
</tr>
<tr>
<td>293</td>
<td>ISO 14692-3</td>
<td>Petroleum and natural gas industries — Glass-reinforced plastics (GRP) piping — Part 3: System design</td>
</tr>
<tr>
<td>294</td>
<td>ISO 14692-4</td>
<td>Petroleum and natural gas industries — Glass-reinforced plastics (GRP) piping — Part 4: Fabrication, installation and operation</td>
</tr>
<tr>
<td>295</td>
<td>ISO 14693</td>
<td>Petroleum and natural gas industries — Drilling and well-servicing equipment</td>
</tr>
<tr>
<td>296</td>
<td>ISO 14723</td>
<td>Petroleum and natural gas industries — Pipeline transportation systems — Subsea pipeline valves</td>
</tr>
<tr>
<td>297</td>
<td>ISO 14998</td>
<td>Petroleum and natural gas industries — Downhole equipment — Completion accessories</td>
</tr>
<tr>
<td>298</td>
<td>ISO 15136-1</td>
<td>Petroleum and natural gas industries — Progressing cavity pump systems for artificial lift — Part 1: Pumps</td>
</tr>
<tr>
<td>299</td>
<td>ISO 15136-2</td>
<td>Petroleum and natural gas industries — Progressing cavity pump systems for artificial lift — Part 2: Surface-drive systems</td>
</tr>
<tr>
<td>Nos.</td>
<td>Code name</td>
<td>Designation</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>300</td>
<td>ISO 15138</td>
<td>Petroleum and natural gas industries — Offshore production installations — Heating, ventilation and air-conditioning</td>
</tr>
<tr>
<td>303</td>
<td>NACE MR0175/ ISO 15156-3</td>
<td>Petroleum and natural gas industries — Materials for use in H2S-containing environments in oil and gas production — Part 3: Cracking-resistant CRAs (corrosion-resistant alloys) and other alloys</td>
</tr>
<tr>
<td>304</td>
<td>ISO 15463</td>
<td>Petroleum and natural gas industries — Field inspection of new casing, tubing and plain-end drill pipe</td>
</tr>
<tr>
<td>305</td>
<td>ISO 15464</td>
<td>Petroleum and natural gas industries — Gauging and inspection of casing, tubing and line pipe threads — Recommended practice</td>
</tr>
<tr>
<td>306</td>
<td>ISO 15544</td>
<td>Petroleum and natural gas industries — Offshore production installations — Requirements and guidelines for emergency response</td>
</tr>
<tr>
<td>307</td>
<td>ISO 15546</td>
<td>Petroleum and natural gas industries — Aluminium alloy drill pipe</td>
</tr>
<tr>
<td>308</td>
<td>ISO 15547-1</td>
<td>Petroleum, petrochemical and natural gas industries — Plate-type heat exchangers — Part 1: Plate-and-frame heat exchangers</td>
</tr>
<tr>
<td>309</td>
<td>ISO 15547-2</td>
<td>Petroleum, petrochemical and natural gas industries — Plate-type heat exchangers — Part 2: Brazed aluminium plate-fin heat exchangers</td>
</tr>
<tr>
<td>310</td>
<td>ISO 15589-1</td>
<td>Petroleum, petrochemical and natural gas industries — Cathodic protection of pipeline systems — Part 1: On-land pipelines</td>
</tr>
<tr>
<td>311</td>
<td>ISO 15589-2</td>
<td>Petroleum, petrochemical and natural gas industries — Cathodic protection of pipeline transportation systems — Part 2: Offshore pipelines</td>
</tr>
<tr>
<td>312</td>
<td>ISO 15590-1</td>
<td>Petroleum and natural gas industries — Induction bends, fittings and flanges for pipeline transportation systems — Part 1: Induction bends</td>
</tr>
<tr>
<td>313</td>
<td>ISO 15590-2</td>
<td>Petroleum and natural gas industries — Induction bends, fittings and flanges for pipeline transportation systems — Part 2: Fittings</td>
</tr>
<tr>
<td>314</td>
<td>ISO 15590-3</td>
<td>Petroleum and natural gas industries — Induction bends, fittings and flanges for pipeline transportation systems — Part 3: Flanges</td>
</tr>
<tr>
<td>315</td>
<td>ISO 15649</td>
<td>Petroleum and natural gas industries — Piping</td>
</tr>
<tr>
<td>316</td>
<td>ISO 15663-1</td>
<td>Petroleum and natural gas industries — Life cycle costing — Part 1: Methodology</td>
</tr>
<tr>
<td>317</td>
<td>ISO 15663-2</td>
<td>Petroleum and natural gas industries — Life-cycle costing — Part 2: Guidance on application of methodology and calculation methods</td>
</tr>
<tr>
<td>318</td>
<td>ISO 15663-3</td>
<td>Petroleum and natural gas industries — Life-cycle costing — Part 3: Implementation guidelines</td>
</tr>
<tr>
<td>319</td>
<td>ISO 15761</td>
<td>Steel gate, globe and check valves for sizes DN 100 and smaller, for the petroleum and natural gas industries</td>
</tr>
<tr>
<td>320</td>
<td>ISO 16440</td>
<td>Petroleum and natural gas industries — Pipeline transportation systems — Design, construction and maintenance of steel cased pipelines</td>
</tr>
<tr>
<td>322</td>
<td>ISO/TS 16530-2</td>
<td>Well integrity — Part 2: Well integrity for the operational phase</td>
</tr>
<tr>
<td>323</td>
<td>ISO 16708</td>
<td>Petroleum and natural gas industries — Pipeline transportation systems — Reliability-based limit state methods</td>
</tr>
<tr>
<td>324</td>
<td>ISO 16812</td>
<td>Petroleum, petrochemical and natural gas industries — Shell-and-tube heat exchangers</td>
</tr>
<tr>
<td>325</td>
<td>ISO/TS 16901</td>
<td>Guidance on performing risk assessment in the design of onshore LNG installations including the ship/shore interface</td>
</tr>
<tr>
<td>326</td>
<td>ISO 16961</td>
<td>Petroleum, petrochemical and natural gas industries — Internal coating and lining of steel storage tanks</td>
</tr>
<tr>
<td>327</td>
<td>ISO 17020</td>
<td>Conformity assessment — Requirements for the operation of various types of bodies performing inspection</td>
</tr>
<tr>
<td>328</td>
<td>ISO 17078-1</td>
<td>Petroleum and natural gas industries — Drilling and production equipment — Part 1: Side-pocket mandrels</td>
</tr>
<tr>
<td>330</td>
<td>ISO 17078-3</td>
<td>Petroleum and natural gas industries — Drilling and production equipment — Part 3: Running tools, pulling tools and kick-over tools and latches for side-pocket mandrels</td>
</tr>
<tr>
<td>Nos.</td>
<td>Code name</td>
<td>Designation</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>332</td>
<td>ISO 17177</td>
<td>Petroleum and natural gas industries — Guidelines for the marine interfaces of hybrid LNG terminals</td>
</tr>
<tr>
<td>333</td>
<td>ISO 17292</td>
<td>Metal ball valves for petroleum, petrochemical and allied industries</td>
</tr>
<tr>
<td>334</td>
<td>ISO 17776</td>
<td>Petroleum and natural gas industries — Offshore production installations — Major accident hazard management during the design of new installations</td>
</tr>
<tr>
<td>335</td>
<td>ISO 17824</td>
<td>Petroleum and natural gas industries — Downhole equipment – Sand screens</td>
</tr>
<tr>
<td>336</td>
<td>ISO/TS 17969</td>
<td>Petroleum, petrochemical and natural gas industries — Guidelines on competency management for well operations personnel</td>
</tr>
<tr>
<td>337</td>
<td>ISO 19900</td>
<td>Petroleum and natural gas industries — General requirements for offshore structures</td>
</tr>
<tr>
<td>338</td>
<td>ISO 19901-1</td>
<td>Petroleum and natural gas industries — Specific requirements for offshore structures — Part 1: Metocean design and operating considerations</td>
</tr>
<tr>
<td>339</td>
<td>ISO 19901-2</td>
<td>Petroleum and natural gas industries — Specific requirements for offshore structures — Part 2: Seismic design procedures and criteria</td>
</tr>
<tr>
<td>340</td>
<td>ISO 19901-3</td>
<td>Petroleum and natural gas industries — Specific requirements for offshore structures – Part 3: Topsides structure</td>
</tr>
<tr>
<td>341</td>
<td>ISO 19901-4</td>
<td>Petroleum and natural gas industries — Specific requirements for offshore structures – Part 4: Geotechnical and foundation design considerations</td>
</tr>
<tr>
<td>342</td>
<td>ISO 19901-5</td>
<td>Petroleum and natural gas industries — Specific requirements for offshore structures — Part 5: Weight control during engineering and construction</td>
</tr>
<tr>
<td>343</td>
<td>ISO 19901-6</td>
<td>Petroleum and natural gas industries — Specific requirements for offshore structures — Part 6: Marine operations</td>
</tr>
<tr>
<td>344</td>
<td>ISO 19901-7</td>
<td>Petroleum and natural gas industries — Specific requirements for offshore structures — Part 7: Stationkeeping systems for floating offshore structures and mobile offshore units</td>
</tr>
<tr>
<td>345</td>
<td>ISO 19901-8</td>
<td>Petroleum and natural gas industries — Specific requirements for offshore structures — Part 8: Marine soil investigations</td>
</tr>
<tr>
<td>346</td>
<td>ISO 19901-9</td>
<td>Petroleum and natural gas industries — Specific requirements for offshore structures — Part 9: Structural integrity management</td>
</tr>
<tr>
<td>347</td>
<td>ISO 19902</td>
<td>Petroleum and natural gas industries — Fixed steel offshore structures</td>
</tr>
<tr>
<td>348</td>
<td>ISO 19903</td>
<td>Petroleum and natural gas industries — Concrete offshore structures</td>
</tr>
<tr>
<td>350</td>
<td>ISO 19905-1</td>
<td>Petroleum and natural gas industries — Site-specific assessment of mobile offshore units — Part 1: Jack-ups</td>
</tr>
<tr>
<td>351</td>
<td>ISO/TR 19905-2</td>
<td>Petroleum and natural gas industries — Site-specific assessment of mobile offshore units — Part 2: Jack-ups commentary and detailed sample calculation</td>
</tr>
<tr>
<td>352</td>
<td>ISO 19905-3</td>
<td>Petroleum and natural gas industries — Site-specific assessment of mobile offshore units — Part 3: Floating unit</td>
</tr>
<tr>
<td>353</td>
<td>ISO 19906</td>
<td>Petroleum and natural gas industries — Arctic offshore structures</td>
</tr>
<tr>
<td>354</td>
<td>ISO 20312</td>
<td>Petroleum and natural gas industries — Design and operating limits of drill strings with aluminium alloy components</td>
</tr>
<tr>
<td>355</td>
<td>ISO 20815</td>
<td>Petroleum, petrochemical and natural gas industries — Production assurance and reliability management</td>
</tr>
<tr>
<td>356</td>
<td>ISO 21049</td>
<td>Pumps – Shaft sealing systems for centrifugal and rotary pumps</td>
</tr>
<tr>
<td>357</td>
<td>ISO 21329</td>
<td>Petroleum and natural gas industries — Pipeline transportation systems — Test procedures for mechanical connectors</td>
</tr>
<tr>
<td>358</td>
<td>ISO 21457</td>
<td>Petroleum, petrochemical and natural gas industries — Materials selection and corrosion control for oil and gas production systems</td>
</tr>
<tr>
<td>359</td>
<td>ISO 21809-1</td>
<td>Petroleum and natural gas industries — External coatings for buried or submerged pipelines used in pipeline transportation systems — Part 1: Polyolefin coatings (3-layer PE and 3-layer PP)</td>
</tr>
<tr>
<td>360</td>
<td>ISO 21809-2</td>
<td>Petroleum and natural gas industries — External coatings for buried or submerged pipelines used in pipeline transportation systems — Part 2: Single layer fusion-bonded epoxy coatings</td>
</tr>
<tr>
<td>361</td>
<td>ISO 21809-3</td>
<td>Petroleum and natural gas industries — External coatings for buried or submerged pipelines used in pipeline transportation systems — Part 3: Field joint coatings</td>
</tr>
<tr>
<td>362</td>
<td>ISO 21809-4</td>
<td>Petroleum and natural gas industries — External coatings for buried or submerged pipelines used in pipeline transportation systems — Part 4: Polyethylene coatings (2-layer PE)</td>
</tr>
<tr>
<td>Nos.</td>
<td>Code name</td>
<td>Designation</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>363</td>
<td>ISO 21809-5</td>
<td>Petroleum and natural gas industries — External coatings for buried or submerged pipelines used in pipeline transportation systems — Part 5: External concrete coatings</td>
</tr>
<tr>
<td>364</td>
<td>ISO 23251</td>
<td>Petroleum, petrochemical and natural gas industries — Pressure-relieving and depressuring systems</td>
</tr>
<tr>
<td>365</td>
<td>ISO 23936-1</td>
<td>Petroleum, petrochemical and natural gas industries — Non-metallic materials in contact with media related to oil and gas production — Part 1: Thermoplastics</td>
</tr>
<tr>
<td>366</td>
<td>ISO 23936-2</td>
<td>Petroleum, petrochemical and natural gas industries — Non-metallic materials in contact with media related to oil and gas production — Part 2: Elastomers</td>
</tr>
<tr>
<td>367</td>
<td>ISO 24817</td>
<td>Petroleum, petrochemical and natural gas industries — Composite repairs for pipework — Qualification and design, installation, testing and inspection</td>
</tr>
<tr>
<td>368</td>
<td>ISO 25457</td>
<td>Petroleum, petrochemical and natural gas industries — Flare details for general refinery and petrochemical service</td>
</tr>
<tr>
<td>369</td>
<td>ISO/TS 27469</td>
<td>Petroleum, petrochemical and natural gas industries — Method of test for fire dampers</td>
</tr>
<tr>
<td>370</td>
<td>ISO 27509</td>
<td>Petroleum and natural gas industries — Compact flanged connections with IX seal ring</td>
</tr>
<tr>
<td>371</td>
<td>ISO 27627</td>
<td>Petroleum and natural gas industries — Aluminium alloy drill pipe thread connection gauging</td>
</tr>
<tr>
<td>372</td>
<td>ISO 28300</td>
<td>Petroleum, petrochemical and natural gas industries — Venting of atmospheric and low-pressure storage tanks</td>
</tr>
<tr>
<td>373</td>
<td>ISO 28460</td>
<td>Petroleum and natural gas industries — Installation and equipment for liquefied natural gas — Ship-to-shore interface and port operations</td>
</tr>
<tr>
<td>374</td>
<td>ISO 28781</td>
<td>Petroleum and natural gas industries — Drilling and production equipment — Subsurface barrier valves and related equipment</td>
</tr>
<tr>
<td>375</td>
<td>ISO 29001</td>
<td>Petroleum, petrochemical and natural gas industries — Sector-specific quality management systems — Requirements for product and service supply organisations</td>
</tr>
<tr>
<td>376</td>
<td>ISO 45001</td>
<td>Occupational health and safety management systems — Requirements with guidance for use</td>
</tr>
<tr>
<td>378</td>
<td>NFPA37</td>
<td>Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines</td>
</tr>
<tr>
<td>379</td>
<td>NFPA 59A</td>
<td>Standard for the Production, Storage, and Handling of Liquefied Natural Gas (LNG)</td>
</tr>
<tr>
<td>380</td>
<td>NORSOK STANDART P-100</td>
<td>Process systems</td>
</tr>
<tr>
<td>381</td>
<td>OCIMF</td>
<td>Guide to Manufacturing and Purchasing Hoses for Offshore Moorings (GMPHOM 2009)</td>
</tr>
<tr>
<td>382</td>
<td>BS OHSAS 18001</td>
<td>Occupational Health and Safety Management (OHS)</td>
</tr>
<tr>
<td>383</td>
<td>PD 5500</td>
<td>Specification for unfired fusion welded pressure vessels</td>
</tr>
<tr>
<td>384</td>
<td>TEMA</td>
<td>Tubular Exchanger Manufacturing Association</td>
</tr>
<tr>
<td>385</td>
<td>AWS D1.1/D1.1M2010</td>
<td>American National Standard Structural Welding Code — Steel</td>
</tr>
<tr>
<td>386</td>
<td>9th Edition TEMA Standards</td>
<td>Standard of Tubular Exchanger Manufacturing Association</td>
</tr>
<tr>
<td>387</td>
<td>AISC</td>
<td>Manual of Steel Construction: Load and Resistance Factor Design</td>
</tr>
<tr>
<td>388</td>
<td>ANSI/AGMA 6032-B13</td>
<td>Standard for Marine Gear Units: Rating and Application for Spur and Helical Gear Teeth</td>
</tr>
</tbody>
</table>
HYDROCARBON RELEASES STATISTICS

4.1 One of the basic reasons for fire and explosions on offshore oil-and-gas facilities is well fluid leakages. The statistics of incidents on offshore facilities of the British sector of the North Sea given below is based on the HSE annual reports containing information on the incident frequency, and may be used by a designer taking into account the recognized extrapolation methods.

The probability of incidents associated with hydrocarbon release (fire, explosion) is analyzed on the basis of statistics provided by the OGP’s "Hydrocarbon Release Database" and Oil & Gas UK’s "Offshore Hydrocarbon Release Statistics".

Fire scenarios are based on hydrocarbon leakages/releases from equipment and pipelines of process systems. According to the data given in Tables 4.1-1 — 4.1-3, in most cases leakages originate in connections and due to failures of fittings.

Table 4.1-1

<table>
<thead>
<tr>
<th>Leakage location</th>
<th>% of total releases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2002</td>
</tr>
<tr>
<td>Flanged pipe connection</td>
<td>13</td>
</tr>
<tr>
<td>Welded pipe connection</td>
<td>13</td>
</tr>
<tr>
<td>Pipe body</td>
<td>6</td>
</tr>
<tr>
<td>Open pipe</td>
<td>4</td>
</tr>
<tr>
<td>Valve stem</td>
<td>8.5</td>
</tr>
<tr>
<td>Valve body</td>
<td>8.5</td>
</tr>
<tr>
<td>Valve flange</td>
<td>0</td>
</tr>
<tr>
<td>Open valve</td>
<td>4</td>
</tr>
<tr>
<td>Tank body</td>
<td>2</td>
</tr>
<tr>
<td>Tank flange</td>
<td>2</td>
</tr>
<tr>
<td>Open tank</td>
<td>2</td>
</tr>
<tr>
<td>Small bore piping</td>
<td>6</td>
</tr>
<tr>
<td>Small bore connection</td>
<td>4</td>
</tr>
<tr>
<td>Automation system connections</td>
<td>15</td>
</tr>
<tr>
<td>Pump/compressor flange</td>
<td>0</td>
</tr>
<tr>
<td>Pump/compressor sealing</td>
<td>6</td>
</tr>
<tr>
<td>Flexible pipeline body/Hose body</td>
<td>0</td>
</tr>
<tr>
<td>Swivel pipe</td>
<td>0</td>
</tr>
<tr>
<td>Other equipment sealings</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 4.1-2

<table>
<thead>
<tr>
<th>Immediate cause</th>
<th>% of total causes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2002</td>
</tr>
<tr>
<td>Internal corrosion</td>
<td>4</td>
</tr>
<tr>
<td>External corrosion</td>
<td>0</td>
</tr>
<tr>
<td>Erosion</td>
<td>9</td>
</tr>
<tr>
<td>Fatigue/vibration</td>
<td>21</td>
</tr>
<tr>
<td>Improper assembly</td>
<td>21</td>
</tr>
<tr>
<td>Operator’s error</td>
<td>4</td>
</tr>
<tr>
<td>Degradation of material properties due to ageing</td>
<td>28</td>
</tr>
<tr>
<td>Procedural violations</td>
<td>6</td>
</tr>
<tr>
<td>Inadequate isolation</td>
<td>2</td>
</tr>
<tr>
<td>Blockage</td>
<td>0</td>
</tr>
<tr>
<td>Inadequate procedures</td>
<td>4</td>
</tr>
<tr>
<td>Equipment defects</td>
<td>0</td>
</tr>
</tbody>
</table>
Moreover, corrosion may result in holes of various diameters in the pipeline and tank walls, which visual detection is impeded due to the presence of thermal insulation. However, according to the Oil & Gas UK statistics report, out of 643 leakages detected on the platforms in the British sector of the North Sea for the period from 1 October 1992 to 31 March 1997, 506 leakages were detected visually.

An example of calculating the leakage rate is given in Table 4.1-12. A valve fitted on a pipeline 400 mm in diameter (D) serves as an example.

Table 4.1-3

<table>
<thead>
<tr>
<th>Underlying cause</th>
<th>% of total causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate compliance monitoring</td>
<td>11</td>
</tr>
<tr>
<td>Inadequate risk assessment</td>
<td>13</td>
</tr>
<tr>
<td>Inadequate structural design</td>
<td>30</td>
</tr>
<tr>
<td>Inadequate procedures</td>
<td>23</td>
</tr>
<tr>
<td>Inadequate competency</td>
<td>8,5</td>
</tr>
<tr>
<td>Inadequate supervision</td>
<td>8,5</td>
</tr>
<tr>
<td>Incorrect material selection/use</td>
<td>13</td>
</tr>
<tr>
<td>Inadequate task specification</td>
<td>0</td>
</tr>
<tr>
<td>Excessive workload</td>
<td>4</td>
</tr>
<tr>
<td>Outdated information/data</td>
<td>0</td>
</tr>
<tr>
<td>Improper assembly</td>
<td>15</td>
</tr>
<tr>
<td>Inadequate maintenance</td>
<td>8,5</td>
</tr>
<tr>
<td>Inadequate communications</td>
<td>2</td>
</tr>
<tr>
<td>Inadequate monitoring/control conditions</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% of total causes</th>
<th>2002</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate compliance monitoring</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Inadequate risk assessment</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Inadequate structural design</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>Inadequate procedures</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>Inadequate competency</td>
<td>8.5</td>
<td>12</td>
</tr>
<tr>
<td>Inadequate supervision</td>
<td>8.5</td>
<td>5</td>
</tr>
<tr>
<td>Incorrect material selection/use</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Inadequate task specification</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Excessive workload</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Outdated information/data</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Improper assembly</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Inadequate maintenance</td>
<td>8.5</td>
<td>—</td>
</tr>
<tr>
<td>Inadequate communications</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Inadequate monitoring/control conditions</td>
<td>32</td>
<td>28</td>
</tr>
</tbody>
</table>

Moreover, corrosion may result in holes of various diameters in the pipeline and tank walls, which visual detection is impeded due to the presence of thermal insulation. However, according to the Oil & Gas UK statistics report, out of 643 leakages detected on the platforms in the British sector of the North Sea for the period from 1 October 1992 to 31 March 1997, 506 leakages were detected visually.

An example of calculating the leakage rate is given in Table 4.1-12. A valve fitted on a pipeline 400 mm in diameter (D) serves as an example.

Table 4.1-4

<table>
<thead>
<tr>
<th>List of special safety measures, which non-performance results in failure of equipment and systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locked valve</td>
</tr>
<tr>
<td>Work approval and permit</td>
</tr>
<tr>
<td>Insulating</td>
</tr>
<tr>
<td>Change of monitoring</td>
</tr>
<tr>
<td>Procedural revision</td>
</tr>
<tr>
<td>Design revision (incl. HAZOP)</td>
</tr>
<tr>
<td>Competent support</td>
</tr>
<tr>
<td>Monitoring inspection/conditions</td>
</tr>
<tr>
<td>Corrosion/erosion monitoring</td>
</tr>
<tr>
<td>Construction/commissioning control review</td>
</tr>
<tr>
<td>Operational review (for installations whose service life has expired)</td>
</tr>
</tbody>
</table>

Table 4.1-5

<table>
<thead>
<tr>
<th>(d/D)</th>
<th>P'</th>
<th>P</th>
<th>$D = 400$ mm</th>
<th>Q_f</th>
<th>$Q_r = Q_f P$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>d, mm</td>
<td>d/D</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0,65</td>
<td>0,65</td>
<td>10</td>
<td>0,025</td>
<td>2,93·10^{-4}</td>
</tr>
<tr>
<td>0,05</td>
<td>0,88</td>
<td>0,23</td>
<td>25</td>
<td>0,0625</td>
<td>1,04·10^{-5}</td>
</tr>
<tr>
<td>0,1</td>
<td>0,94</td>
<td>0,125</td>
<td>50</td>
<td>0,125</td>
<td>4,5·10^{-4}</td>
</tr>
<tr>
<td>0,2</td>
<td>0,06</td>
<td>0,25</td>
<td>100</td>
<td>0,25</td>
<td>2,7·10^{-5}</td>
</tr>
<tr>
<td>1,00</td>
<td>1,00</td>
<td>0,025</td>
<td>1</td>
<td>0,025</td>
<td>2,7·10^{-5}</td>
</tr>
</tbody>
</table>

P' — distribution value for (d/D);
P — difference between a subsequent and preceding distribution value;
d — leak hole diameter;
d/D — d to D ratio;
Q_f — leakage frequency from valve (according to HSE data);
Q_r — leakage frequency from valve for different leak hole diameters.
Table 4.1-6

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Diameter (D), mm</th>
<th>Leakage rate per installation year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flanges</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D < 75</td>
<td>4.04·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td>75 < D < 275</td>
<td>5.46·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td>D > 275</td>
<td>1.18·10⁻⁴</td>
</tr>
<tr>
<td>Valves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D < 75</td>
<td>7.18·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td>75 < D < 275</td>
<td>1.02·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>D > 275</td>
<td>4.50·10⁻⁴</td>
</tr>
</tbody>
</table>

Table 4.1-7

Distribution of flange and valve holes by size

<table>
<thead>
<tr>
<th>Ratio of leak hole diameter to inner pipeline diameter</th>
<th>Distribution of leak holes by size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>—</td>
</tr>
<tr>
<td>0.10</td>
<td>0.96</td>
</tr>
<tr>
<td>0.20</td>
<td>—</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Although the distribution by size is constant, discrete values are used for hole calculation, which is reasonable, since most of the bores are small and the difference in leakage consequences between various bores of a small diameter is minor. From the above it can be assumed that leakage rate from different diameter flanges (refer to Table 4.1-8) and valves (refer to Table 4.1-9) is calculated by rounded values of bore sizes.

Table 4.1-8

Leakage frequency from flanges for different hole sizes

<table>
<thead>
<tr>
<th>Diameter, mm</th>
<th>Hole size, mm</th>
<th>Flange</th>
<th>Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full section</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>400</td>
<td>4.72·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>300</td>
<td>4.72·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>250</td>
<td>2.18·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>200</td>
<td>2.18·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>150</td>
<td>2.18·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>100</td>
<td>2.18·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>50</td>
<td>1.62·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td>1.62·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 4.1-9

Leakage frequency from valves for different hole sizes

<table>
<thead>
<tr>
<th>Diameter, mm</th>
<th>Hole size, mm</th>
<th>Flange</th>
<th>Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full section</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>400</td>
<td>2.70·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>300</td>
<td>2.70·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>250</td>
<td>6.12·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>200</td>
<td>6.12·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>150</td>
<td>6.12·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>100</td>
<td>1.22·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>50</td>
<td>4.31·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td>4.31·10⁻⁶</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 4.1-10

Leakage frequency from pipelines

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Diameter, mm</th>
<th>Leakage frequency per operation year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline</td>
<td>D < 75</td>
<td>1.93·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>100 < D < 275</td>
<td>6.78·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td>D > 275</td>
<td>5.12·10⁻⁵</td>
</tr>
</tbody>
</table>

Table 4.1-11

Distribution of pipeline bore sizes

<table>
<thead>
<tr>
<th>Ratio of leak hole diameter to inner pipeline diameter</th>
<th>Distribution of leak holes by size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>—</td>
</tr>
<tr>
<td>0.22</td>
<td>—</td>
</tr>
<tr>
<td>0.45</td>
<td>—</td>
</tr>
<tr>
<td>1.00</td>
<td>—</td>
</tr>
</tbody>
</table>
4.2 Leakages from compressors.
Leakages from main standard size compressors account for 1.44×10^{-3} per year.

4.3 Leakages from tanks.
Leakages from tanks of main standard sizes accounts for 1.85×10^{-4} per year.
The leakage frequency calculation from different diameter holes is given in Table 4.3-2.

Table 4.3-2

<table>
<thead>
<tr>
<th>Diameter, mm</th>
<th>Hole size, mm</th>
<th>Outflow cross-section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>400</td>
<td>1,06·10⁻⁴</td>
<td>1,85·10⁻⁴</td>
</tr>
<tr>
<td>300</td>
<td>1,06·10⁻⁴</td>
<td>1,85·10⁻⁴</td>
</tr>
<tr>
<td>250</td>
<td>1,06·10⁻⁴</td>
<td>1,85·10⁻⁴</td>
</tr>
<tr>
<td>200</td>
<td>1,06·10⁻⁴</td>
<td>1,85·10⁻⁴</td>
</tr>
<tr>
<td>150</td>
<td>2,90·10⁻⁴</td>
<td>—</td>
</tr>
<tr>
<td>100</td>
<td>2,90·10⁻⁴</td>
<td>—</td>
</tr>
<tr>
<td>50</td>
<td>1,21·10⁻³</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td>2,64·10⁻³</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: Hole size values are rounded to the nearest 50 mm; leakage rate is given per year.

4.4 Quantitative assessment of fire risk in gas-vapour phase.

A probability of fire in gas-vapour phase is determined as follows:

$$Q_{AR_{gvp}} = Q_{ig} \cdot Q_l$$ \hspace{1cm} (4.4-1)

where

- $Q_{AR_{gvp}}$ = quantitative fire risk assessment;
- Q_{ig} = probability of gas-vapour fraction ignition;
- Q_l = leakage rate.

The ignition probability is determined as follows:

$$\lg Q_{ig} = 0,3929 \cdot (\lg Q_{liq} + 1) - 2,376$$ \hspace{1cm} (4.4-2)

where Q_{liq} = mass liquid flow rate, in kg/s.

The mass liquid flow rate is determined by the formula

$$Q_{liq} = C_d A \cdot \sqrt{\frac{2 \rho (P - P_d)}}$$ \hspace{1cm} (4.4-3)

where

- Q_{liq} = mass liquid flow rate, in kg/s;
- C_d = flow coefficient (0.6 for round holes);
- A = leak hole area, in m²;
- ρ = liquid density;
- P = leakage pressure, in Pa;
- P_d = atmospheric pressure (1,01·10⁵ Pa).

The quantitative fire risk assessment is determined by the formula

$$Q_{AR_n} = (Q_l^m \cdot Q_{ig}^n)$$ \hspace{1cm} (4.4-4)

where Q_l, Q_{ig} = leakage rate at operation of separators, tanks and instruments correspondingly (adopted from Tables of Sections 2 — 4);

m, n, l = number of separators, tanks and instruments correspondingly.

Calculation is made for the following:

- the most probable emergency cross-section (10 mm);
- the maximum emergency cross-section.

The value Q_{ig} for the most probable emergency cross-section is equal to 2,3·10⁻². The probability of liquid ignition for the maximum emergency cross-section with the mass flow rate of min 50 kg/s is assumed equal to 8,0·10⁻². The calculation results are given in Table 4.4.

Table 4.4

<table>
<thead>
<tr>
<th>Leakage from</th>
<th>Q_{AR_n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most probable emergency cross-section</td>
<td>8,9·10⁻³</td>
</tr>
<tr>
<td>Maximum emergency cross-section</td>
<td>3,1·10⁻⁴</td>
</tr>
</tbody>
</table>
Правила по нефтегазовому оборудованию морских плавучих нефтегазодобывающих комплексов, плавучих буровых установок и морских стационарных платформ

Russian Maritime Register of Shipping

Rules for the Oil-and-Gas Equipment of Floating Offshore Oil-and-Gas Production Units, Mobile Offshore Drilling Units and Fixed Offshore Platforms

The edition is prepared by Russian Maritime Register of Shipping

8, Dvortsovaya Naberezhnaya, 191186, St. Petersburg, Russian Federation

www.rs-class.org/en/